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So far, we have acquired a good understanding of A(n,m) and A(n,∞,m)
architectures. Thus we now begin to turn towards the study of A(n,m, p) architec-
tures. We can remove some degrees of freedom from the problem by having p = n
and letting the input data also be the target data. This is the case of autoencoder
networks.

Thus in this chapter we focus on autoencoder networks. The basic original
idea behind autoencoders is to use the input data as the target, i.e. to try to
reconstruct the input data in the output layer. As described in [11], the idea was
originally suggested by Sanjaya Addanki and further developed by the PDP group
[552, 441]. The basic idea of training a network to reproduce an input that is
already available may seem silly at first sight, until one realizes that what is of
interest in such a network is not so much its output, but rather the representations
that emerge in the hidden layers. Autoencoders can have recurrent connections and
multiple hidden layers, but in this chapter we will focus primarily on feedforward
autoencoders with a single hidden layer, and thus on A(n,m, n) architectures. This
is for simplicity, but also because we want to further the study of A(n,m, p) networks
with a single hidden layer started in the previous chapter. Furthermore, in certain
important cases such as the linear case, the solution of the single-hidden layer regime
is sufficient to understand what happens in the multiple-hidden layer regime. An
example of recurrent autoencoder will be studied in a later chapter in the section
on recirculation algorithms.

To be more precise, there are several important reasons to spend an entire
chapter on autoencoders. Among the main ones:

1. Autoencoders provide an essential bridge between supervised and unsupervised
learning, basically by turning an unsupervised problem into a supervised prob-
lem. As such, they are the canonical example of what is called self-supervised
learning.

2. Autoencoders are useful in practice and can be used in different tasks ranging
from dimensionality reduction, to denoising, to deep architecture initialization.

3. Autoencoders provide a natural bridge to several other areas, such as data
compression, coding and information theory, principal component analysis and
generative and latent-variable models in statistics, to name a few.

4. Autoencoders building blocks can be composed in many ways in order to design
more complex networks. For instance, they can be stacked vertically to create
certain kinds of deep architectures.

5. Finally, they are essential for the theory of deep learning. After understanding
shallow networks and the universal properties of deep networks with a single
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hidden layer, it is natural to look at specific networks A(n,m, p) with a single
hidden layer. Using the input data as the target is a natural way to reduce
the degrees of freedom of the problem and results in A(n,m, n). As we shall
see, this reduction is not very limiting: in all the cases where one can obtain
a full understanding of the corresponding autoencoder, it is relatively easy to
move from the auto association case to the general case of hetero-association.
Moreover, in a similar way, we shall see that in all the cases where one can
obtain a full understanding of the corresponding autoencoder, it is relatively
easy to move from the single hidden layer to the multiple hidden layer case
and thereby derive important insights about deeper architectures. We will
present a complete treatment of autoencoders in the linear case and the un-
restricted Boolean case. This will provide a complete solution to the problem
of understanding the functional capacity of these models, and will also lead to
key insights on issues of local minima and complexity in more general cases.

We begin by describing a general framework for organizing the study of various
autoencoders.

5.1 A General Autoencoder Framework

To derive a fairly general framework, an autoencoder with architecture A(n,m, n)
(Figure 5.1) is defined by a tuple n,m,K,F,G,A,B,X ,∆ where:

1. n,m and K are positive integers.

2. F and G are sets.

3. A is a class of functions from Gm to Fn.

4. B is a class of functions from Fn to Gm.

5. X = {x1, . . . , xK} is a set of K training vectors in Fn. When external targets
are present (hetero-association), we let Y = {y1, . . . , yK} denote the corre-
sponding set of target vectors in Fn. In the hetero-associative case, it is also
possible for the targets to be in Fp, for some p 6= n.

6. ∆ is a distance or distortion function (e.g. Lp norm, Hamming distance)
defined over Fn.

For any A ∈ A and B ∈ B, the autoencoder transforms an input vector x ∈ Fn
into an output vector A ◦B(x) ∈ Fn (Figure 5.1). The corresponding autoencoder
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Figure 5.1: An A(n,m, n) Autoencoder Architecture.

problem is to find A ∈ A and B ∈ B that minimize the overall error or distortion
function:

(5.1) min
A,B
E(A,B) = min

A,B

K∑
k=1

E(xk) = min
A,B

K∑
k=1

∆
(
A ◦B(xk), xk

)
In the hetero-associative case, when external targets yk are provided, the minimiza-
tion problem becomes:

(5.2) min
A,B
E(A,B) = min

A,B

K∑
k=1

E(xk, yk) = min
A,B

K∑
k=1

∆
(
A ◦B(xk), yk

)
The framework above is not meant to capture all possible kinds of autoen-

coders, but only a sufficiently large subset, in order to get us started. Within this
framework, many different kinds of autoencoders can be considered. For instance,
in the linear case, the functions A and B are represented by matrices with entries
over a field. In this case, the most relevant autoencoders for this book are the linear
autoencoders over the real numbers [79] with the usual quadratic distance. But
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one can also consider linear autoencoders over the complex numbers [83], or linear
autoencoder over finite fields [68, 1]. The theory of linear autoencoder over the
complex numbers is very similar to the theory of linear autoencoders over the real
numbers (simply by replacing “transpose” by “conjugate transpose” everywhere).
The theory of autoencoders over finite fields is closely related to coding theory and
beyond the scope of this book. Similarly, in the non-linear case, one can consider
different kinds of non-linear functions, such as Boolean functions (e.g. unrestricted
or linear threshold), or differentiable functions (e.g. sigmoidal). Here we will focus
primarily on the Boolean unrestricted case, which is the only non-linear case that
has received a complete treatment so far.

When n > m the autoencoder is called compressive, and when n ≤ m the
autoencoder is called expansive. Expansive autoencoders are of interest, for in-
stance in a biological context [57], but in general require additional assumptions in
order to avoid trivial solutions based on the identity function and their theory is
under-developed. Thus, in the next sections, we are going to focus on compressive
autoencoders, and specifically on the linear autoencoder over the real numbers and
the unrestricted Boolean autoencoder with binary {0, 1} variables.

5.2 General Autoencoder Properties

One of the main benefits of studying different classes of autoencoders within this
general framework is the identification of a list of common properties that may be
investigated in each specific case. This general list is thus a result of the analysis
which emerges, by generalization, only after careful consideration of several individ-
ual cases. With the benefit of hindsight, however, it is given here upfront before
delving into the details of each specific case.

1) Invariances. What are the relevant group actions for the problem? What are
the transformations of Fn and Gp, or A and B, that leave the problem or the learning
algorithm invariant?

2) Fixed Layer Solutions. Is it possible to optimize A (resp. B), fully or partially,
while B (resp. A) is held constant?

3) Problem Complexity. How complex is the autoencoder optimization problem?
Is there an overall analytical solution? Is the corresponding decision problem NP-
complete?

4) Landscape of E. What is the landscape of the overall error E? Are there any
symmetries and critical points (maxima, minima, saddle points)? How can they be
characterized?



100 CHAPTER 5. AUTOENCODERS

Figure 5.2: Classification of Linear Autoencoders. Linear autoencoders can be defined
over different fields, in particular infinite fields such as R or C, or finite fields such as the
Galois Field with two elements GF(2) (F2 = {0, 1}).

5) Clustering. Especially in the compressive case where m < n, what is the
relationship to clustering?

6) Transposition. Is there a notion of symmetry or transposition between the
decoding and coding transformations A and B, in particular around critical points?

7) Recirculating. What happens if the values from the output layer are recycled
into the input layer, in particular around critical points?

8) Learning Algorithms. What are the learning algorithms and their properties?
In particular, can A and B be fully, or partially, optimized in alternation? And if so,
is the algorithm convergent? And if so, at what speed and what are the properties
of the corresponding limit points?

9) Generalization. What are the generalization properties of the autoencoder
after learning?

10) External Targets. How does the problem change if external targets are pro-
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vided?

11) Composition. What are the effects of composing autoencoders horizontally
or vertically?

Not all these properties can be addressed analytically for all types of autoen-
coders. But they can be addressed for several important classes of autoencoders,
including the linear autoencoders over the real and complex numbers, the linear au-
toencoders over finite fields, and the non-linear unrestricted Boolean or unrestricted
probabilistic autoencoders.

5.3 Linear Autoencoders

Here we consider the compressive, real-valued, linear case where F = G = R and
the goal is the minimization of the squared Euclidean distance:

(5.3) min E(A,B) = min
A,B

K∑
t=k

||xk − ABxk||2 =
K∑
k=1

(xk − ABxk)t(xk − ABxk)

Unless otherwise specified, all vectors are column vectors and we use xt (resp. X t)
to denote the transpose (or conjugate transpose in order to deal with the complex
case) of a vector x (resp. of a matrix X). As we shall see, one can also address the
hetero-associative case where external targets are available, in which case the goal
is the minimization of the distance:

(5.4) min E(A,B) = min
A,B

K∑
k=1

||yk − ABxk||2 =
K∑
k=1

(yk − ABxk)t(yk − ABxk)

The following covariance matrices will be useful. In general, we define:

(5.5) ΣXY =
∑
k

xky
t
k

Using this definition, ΣXX ,ΣY Y are symmetric (Hermitian in the complex case)
matrices (ΣXX)t = ΣXX and (ΣY Y )t = ΣY Y , and (ΣXY )t = ΣY X . We also define:

(5.6) Σ = ΣY XΣ−1
XXΣXY
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Σ is also symmetric. In the auto-associative case, xk = yk for all k resulting in
Σ = ΣXX . Note that any symmetric matrix admits a set of orthonormal eigenvectors
and all its eigenvalues are real. Finally, we let Im denote the m×m identity matrix.

For several results, we will make the assumption that Σ is invertible. This
is not a very restrictive assumption for several reasons. First, by adding a small
amount of noise to the data, a non-invertible Σ could be converted to an invertible
Σ. More importantly, in many settings one can expect the training vectors to span
the entire input space and thus Σ to be invertible. If the training vectors span a
smaller subspace, then the original problem can be transformed to an equivalent
problem defined on the smaller subspace.

5.3.1 Useful Reminders

Here we provide a few reminders that will be useful to solve the linear autoencoder
from first principles in a general, coordinate-invariant, way.

Standard Linear Regression. Consider the standard linear regression problem
of minimizing E(B) =

∑
k ||yk−Bxk||2, where B is an m×n matrix, corresponding

to a linear neural network without any hidden layers. Then we can write:

(5.7) E(B) =
∑
k

xtkB
tBxk − 2ytkBxk + ||yk||2

Thus E is a convex function in B because the associated quadratic form is equal to:

(5.8)
∑
k

xtkC
tCxk =

∑
k

||Cxk||2 ≥ 0

Let B be a critical point. Then by definition for any m× n matrix C we must have
limε→0 [E(B+ εC)−E(B)]/ε = 0. Expanding and simplifying this expression gives:

(5.9)
∑
k

xtkB
tCxk − ytkBCxk = 0

for all m×n matrices C. Using the linearity of the trace operator and its invariance
under circular permutation of its arguments1, this is equivalent to:

1It is easy to show directly that for any matrices A and B of the proper size, Tr(AB) = Tr(BA)
[389]. Therefore for any matrices A, B, and C of the proper size, we have Tr(ABC) = Tr(CAB) =
Tr(BCA).
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(5.10) Tr ((ΣXXB
t − ΣXY )C) = 0

for any C. Thus we have ΣXXB
t − ΣXY = 0 and therefore:

(5.11) BΣXX = ΣY X

If ΣXX is invertible, then Cxk = 0 for any t is equivalent to C = 0, and thus
the function E(B) is strictly convex in B. The unique critical point is the global
minimum given by B = ΣY XΣ−1

XX . This is just another way of deriving the linear
regression result obtained by looking at gradient descent in shallow networks in
Chapter 3. As we shall see, the solution to the standard linear regression problem,
together with the general approach given here to solve it, is also key for solving the
more general linear autoencoder problem. The solution will also involve projection
matrices.

Projection Matrices. For any n × m matrix A with m ≤ n, let PA denote the
orthogonal projection onto the subspace generated by the columns of A. Then PA
is a symmetric matrix and P 2

A = PA, PAA = A since the image of PA is spanned
by the columns of A and these are invariant under PA. The kernel of PA is the
space A⊥ orthogonal to the space spanned by the columns of A. Obviously, we have
PAA

⊥ = 0 and AtPA = At. The projection onto the space orthogonal to the space
spanned by the columns of A is given by In−PA. In addition, if the columns of A are
independent (i.e. A has full rank m), then the matrix of the orthogonal projection
is given by PA = A(AtA)−1At [449] and P t

A = PA. Note that all these relationships
are true even when the columns of A are not orthonormal.

Some Misconceptions. As we shall see, the global minimum of the linear autoen-
coder corresponds to Principal Component Analysis. While the global minimum
solution of linear autoencoders over R and C can be expressed analytically, it is
often not well appreciated that there is more to be understood about linear autoen-
coders. In particular, if one is interested in learning algorithms that proceed through
incremental and somewhat “blind” weight adjustments, then one must study the en-
tire landscape of E , including all the critical points of E , and derive and compare
different learning algorithms. A second misconception is to believe that the problem
is a convex optimization problem, hence somewhat trivial, since after all the error
function is quadratic and the transformation W = AB is linear. As previously men-
tioned, the problem with this argument is that the bottleneck layer forces W to be
of rank m or less, and the set of matrices of rank at most m is not convex. What is
true, and crucial for solving the linear autoencoders over infinite fields, is that the
problem becomes convex when A or B is fixed.
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5.3.2 Group Invariances

For any autoencoder, it is important to investigate whether there are any group of
transformations on the data or on the weights that leave its properties invariant.

Change of Coordinates in the Hidden Layer. Note that for any invertible
m × m matrix C, we have W = AB = ACC−1B and E(A,B) = E(AC,C−1B).
Thus all the properties of the linear autoencoder are invariant with respect to any
change of coordinates in the hidden layer.

Change of Coordinates in the Input/Output Spaces. Consider an orthonor-
mal change of coordinates in the output space defined by an orthogonal (or unitary)
n × n matrix D, and any change of coordinates in the input space defined by an
invertible N × N matrix C. This leads to a new autoencoder problem with in-
put vectors Cx1, . . . , CxK and target output vectors of the form Dy1, . . . , DyK with
reconstruction error of the form:

(5.12) E(A′, B′) =
∑
k

||Dyk − A′B′Cxk||2

If we use the one-to-one mapping between pairs of matrices (A,B) and (A′, B′)
defined by A′ = DA and B′ = BC−1, we have:

(5.13) E(A′, B′) =
∑
k

||Dyk − A′B′Cxk||2 =
∑
k

||Dyk −DABxk||2 = E(A,B)

the last equality using the fact that D is an isometry which preserves distances.
Thus, using the transformation A′ = DA and B′ = BC−1 the original problem and
the transformed problem are equivalent and the function E(A,B) and E(A′, B′) have
the same landscape. In particular, in the auto-associative case, we can take C = D
to be a unitary matrix. This leads to an equivalent autoencoder problem with input
vectors Cxk and covariance matrix CΣC−1. For the proper choice of C there is an
equivalent problem where the basis of the space is provided by the eigenvectors of
the covariance matrix and the covariance matrix is a diagonal matrix with diagonal
entries equal to the eigenvalues of the original covariance matrix Σ (see exercises).

5.3.3 Fixed-Layer and Convexity Results

A key technique for studying any autoencoder, is to simplify the problem by fixing
all its transformations but one. Thus in this section we study what happens to the
linear autoencoder problem when either A or B is fixed, essentially reducing the
problem to standard linear regression.
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Theorem 9. (Fixed A) For any fixed n × m matrix A, the function E(A,B) is
convex in the coefficients of B and attains its minimum for any B satisfying the
equation:

(5.14) AtABΣXX = AtΣY X

If ΣXX is invertible and A is of full rank m, then E is strictly convex and has a
unique minimum reached when:

(5.15) B = (AtA)−1AtΣY XΣ−1
XX

In the auto-associative case, if ΣXX is invertible and A is of full rank m, then the
optimal B has full rank M and does not depend on the data. It is given by:

(5.16) B = (AtA)−1At

and in this case, W = AB = A(AtA)−1At = PA and BA = Im.

Proof. We write:

(5.17) E(A,B) =
∑
k

xtkB
tAtABxk − 2(ytkABxk) + ||yk||2

Then for fixed A, E is a convex function because the associated quadratic form is
equal to:

(5.18)
∑
k

xtkC
tAtACxk =

∑
k

||ACxk||2 ≥ 0

for any m×n matrix C. Let B be a critical point. Then by definition for any m×n
matrix C we must have limε→0 [E(A,B + εC) − E(A,B)]/ε = 0. Expanding and
simplifying this expression gives:

(5.19)
∑
k

xtkB
tAtACxk − ytkACxk = 0
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for all m×n matrices C. Using the linearity of the trace operator and its invariance
under circular permutation of its arguments, this is equivalent to:

(5.20) Tr ((ΣXXB
tAtA− ΣXYA)C) = 0

for any C. Thus we have ΣXXB
tAtA− ΣXYA = 0 and therefore:

(5.21) AtABΣXX = AtΣY X

Finally, if ΣXX is invertible and if A is of full rank, then ACxk = 0 for any k is
equivalent to C = 0, and thus the function E(A,B) is strictly convex in B. Since
AtA is invertible, the unique critical point is obtained by solving Equation 5.14.

In similar fashion, we have the following theorem.

Theorem 10 (Fixed B). For any fixed m × n matrix B, the function E(A,B) is
convex in the coefficients of A and attains its minimum for any A satisfying the
equation:

(5.22) ABΣXXB
t = ΣY XB

t

If ΣXX is invertible and B is of full rank, then E is strictly convex and has a unique
minimum reached when:

(5.23) A = ΣY XB
t(BΣXXB

t)−1

In the auto-associative case, if ΣXX is invertible and B is of full rank, then the
optimal A has full rank m and depends on the data. It is given by:

(5.24) A = ΣXXB
t(BΣXXB

t)−1

and BA = Im.

Proof. From Equation 5.17, the function E(A,B) is a convex function in A. The
condition for A to be a critical point is:

(5.25)
∑
k

xtkB
tAtCBxk − ytkCBxk = 0
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for any m× n matrix C, which is equivalent to:

(5.26) Tr ((BΣXXB
tAt −BΣXY )C) = 0

for any matrix C. Thus BΣXXB
tAt−BΣXY = 0 which implies Equation 5.22. The

other statements in the theorem follow immediately.

Remark 1. Note that from Theorems 9 and 10 and their proofs, we have that
(A,B) is a critical point of E(A,B) if and only if Equation 5.14 and Equation
5.22 are simultaneously satisfied, that is if and only if AtABΣXX = AtΣY X and
ABΣXXB

t = ΣY XB
t.

5.3.4 Critical Points and the Landscape of E

In this section we further study the landscape of E , its critical points, and the
properties of W = AB at those critical points.

Theorem 11. (Critical Points) Assume that ΣXX is invertible. Then two matri-
ces (A,B) define a critical point of E, if and only if the global map W = AB is of
the form:

(5.27) W = PAΣY XΣ−1
XX

with A satisfying:

(5.28) PAΣ = PAΣPA = ΣPA

In the auto-associative case, this becomes:

(5.29) W = AB = PA

and:

(5.30) PAΣXX = PAΣXXPA = ΣXXPA

If A is of full rank, then the pair (A,B) defines a critical point of E if and only if
A satisfies Equation 5.28 and B satisfies Equation 5.16. Hence B must also be of
full rank.
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Proof. If (A,B) is a critical point of E , then from Equation 5.14, we must have:

(5.31) At(AB − ΣY XΣ−1
XX) = 0

Let:

(5.32) S = AB − PAΣY XΣ−1
XX

Then since AtPA = At, we have AtS = 0. Thus the space spanned by the columns
of S is a subset of the space orthogonal to the space spanned by the columns of A
(i.e. S ∈ A⊥). On the other hand, since:

(5.33) PAS = S

S is also in the space spanned by the columns of A (i.e. S ∈ Span(A)). Taken
together, these two facts imply that S = 0, resulting in W = AB = PAΣY XΣ−1

XX ,
which proves Equation 5.27. Note that for this result, we need only B to be critical
(i.e. optimized with respect to A). Using the definition of Σ, we have:

(5.34) PAΣPA = PAΣY XΣ−1
XXΣXXΣ−1

XXΣXY PA

Since S = 0, we have AB = PAΣY XΣ−1
XX and thus:

(5.35) PAΣPA = PAΣY XΣ−1
XXΣXXΣ−1

XXΣXY PA = ABΣXXB
tAt

Similarly, we have:

(5.36) PAΣ = ABΣXY

and:

(5.37) ΣPA = ΣY XB
tAt

Then Equation 5.28 result immediately by combining Equations 5.35, 5.36, and 5.37
using Equation 5.22. The rest of the theorem follows easily.
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Remark 2. The above proof unifies the cases when AB is of rank m and strictly
less than m.

Theorem 12. (Critical Points of Full Rank) Assume that Σ is of full rank
with n distinct eigenvalues λ1 > · · · > λn and let u1, . . . , un denote a corresponding
basis of orthonormal eigenvectors. If I = {i1, . . . , im} (1 ≤ i1 < . . . < im ≤ n)
is any ordered set of indices of size m, let UI = (ui1 , . . . , uim) denote the matrix
formed using the corresponding column eigenvectors. Then two full rank matrices
A,B define a critical point of E if and only if there exists an ordered m-index set I
and an invertible m×m matrix C such that:

(5.38) A = UIC and B = C−1U t
IΣY XΣ−1

XX

For such critical point, we have:

(5.39) W = AB = PUIΣY XΣ−1
XX

and:

(5.40) E(A,B) = Tr ΣY Y −
∑
i∈I

λi

In the auto-associative case, these equations reduce to:

(5.41) A = UIC and B = C−1U t
I

(5.42) W = AB = PUI

and:

(5.43) E(A,B) = Tr Σ−
∑
i∈I

λi =
∑
i∈Ī

λi

where Ī = {1, . . . , N}\I is the complement of I.
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Proof. Since PAΣ = ΣPA, we have

(5.44) PAΣA = ΣPAA = ΣA

Thus the columns of A form an invariant space of Σ. Thus A is of the form UIC. The
conclusion for B follows from Equation 5.27 and the rest is easily derived. Equation
5.43 can be derived easily by using the reminders given at the beginning of this
section on linear autoencoders and using the unitary change of coordinates under
which ΣXX becomes a diagonal matrix. In this system of coordinates, we have:

E(A,B) =
∑
k

||yk||2 +
∑
k

Tr (xtk(AB)tABxk)− 2
∑
k

Tr (ytkABxk)

Therefore, using the invariance property of the trace under circular permutations,
we have:

E(A,B) = Tr (Σ) + Tr ((AB)2Σ)− 2Tr (ABΣ)

Since AB is a projection operator, this yields Equation 5.43. In the auto-associative
case with these coordinates it is easy to see that Wxk and E(A,B) =

∑
k E(xk) are

easily computed from the values of Wui. In particular, E(A,B) =
∑n

i=1 λi(ui −
Wui)

2. In addition, at the critical points, we have Wui = ui if i ∈ I, and Wui = 0
otherwise.

Remark 3. All the previous theorems are true in the hetero-associative case with
targets yk. Thus they can readily be applied to address the linear denoising autoen-
coder [660, 659] over R or C. The linear denoising autoencoder is an autoencoder
trained to remove noise by having to associate noisy versions of the inputs with the
correct inputs. In other words, using the current notation, it is an autoencoder where
the inputs xk are replaced by xk +nk where nk is the noise vector and the target out-
puts yk are of the form yk = xk. Thus the previous theorems can be applied using
the following replacements: ΣXX = ΣXX +ΣNN +ΣNX +ΣXN , ΣXY = ΣXX +ΣNX ,
ΣY X = ΣXX + ΣXN . Further simplifications can be obtained using particular as-
sumptions on the noise, such as ΣNX = ΣXN = 0.

Theorem 13. (Absence of Local Minima) The global minimum of the linear
autoencoder is achieved by full rank matrices A and B associated with the index set
1, . . . ,m of the m largest eigenvalues of Σ with A = UIC and B = C−1U t

I (and
where C is any invertible m×m matrix). When C = I, A = Bt. All other critical
points are saddle points associated with corresponding projections onto non-optimal
sets of eigenvectors of Σ of size m or less.

Proof. The proof is by a perturbation argument showing that, for the critical points
that are not associated with the global minimum, there is always a direction of escape
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that can be derived using unused eigenvectors associated with higher eigenvalues in
order to lower the error E (see [79] for more details). The proof can be simplified by
using the group invariance properties under transformation of the coordinates by a
unitary matrix. With such a transformation, it is sufficient to study the landscape
of E when Σ is a diagonal matrix and A = Bt = UI .

Remark 4. At the global minimum, if C is the m×m identity matrix (C = I), in the
auto-associative case then the activities in the hidden layer are given by ut1x, . . . , u

t
px,

corresponding to the coordinates of x along the first m eigenvectors of ΣXX . These
are the so called principal components of x and the autoencoder implements Principal
Component Analysis (PCA), also closely related to the Singular Value Decomposition
(SVD), establishing another bridge between neural networks and statistics.

Figure 5.3: Landscape of E .

The theorem above shows that when Σ is full rank, there is a special class
of critical points associated with C = I. In the auto-associative case, this class is
characterized by the fact that A and B are transpose of each other (A = Bt).

Theorem 14. (Conjugate Transposition) Assume ΣXX is of full rank in the
auto-associative case. Consider any point (A,B) where B has been optimized with
respect to A, including all critical points. Then:

(5.45) W = AB = BtAtAB = BtAt = W t and E(A,B) = E(Bt, At)
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Furthermore, when A is full rank:

(5.46) W = PA = P t
A = W t

Proof. By Theorem 1, in the auto-associate case, we have:

AtAB = At

Thus, by taking the transpose of each side, we have:

BtAtA = A

It follows that:
BtAt = BtAtAB = AB

which proves Equation 5.45. If in addition A is full rank, then by Theorem 9
W = AB = PA and the rest follows immediately.

Remark 5. Starting from a pair (A,B) with W = AB and where B has been opti-
mized with respect to A, let A′ = Bt and optimize B again so that B′ = (A′A′t)−1A′t.
Then we also have:

(5.47) W ′ = A′B′ = W t = W = PA and E(A,B) = E(A′, B′)

5.3.5 Learning Algorithms

Although mathematical formula for the global minimum solution of the linear au-
toencoder have been derived, it is still useful to study alternative incremental learn-
ing algorithms for several reasons. First, the global solution may not be available
immediately to a physical, self-adjusting, learning circuit capable of making only
small adjustments at each learning step. In addition, small adjustments may also
be preferable in a non-stationary environment where the set X of training vectors
changes with time, or in memory-limited situations where the entire training set
cannot be stored. Finally, the study of incremental learning algorithms in linear
circuits may shed some light on similar incremental algorithms applied to non-linear
circuits where the global optimum cannot be derived analytically.

For the linear autoencoder, several such algorithms can be conceived, includ-
ing: (stochastic) gradient descent studied in the exercises and in the next chapter;
recirculation (studied in a later chapter); and alternative partial or full optimization
of A and B. Here we provide one theorem on the latter, leaving the proof as an
exercise (see, also [83] for additional details).
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Theorem 15. (Alternate Minimization) Consider the algorithm where A and
B are optimized in alternation (starting from A or B), holding the other one fixed.
This algorithm will converge to a critical point of E. Furthermore, if the starting
value of A or B is initialized randomly, then with probability one the algorithm will
converge to a critical point where both A and B are full rank.

5.3.6 Generalization Properties

One of the most fundamental problems in machine learning is to understand the
generalization properties of a learning system. Although in general this is not a
simple problem, in the case of the autoencoder the generalization properties can
easily be understood. After learning, A and B must be at a critical point. Assuming
without much loss of generality that A is also full rank and ΣXX is invertible, then
from Theorem 1 we know in the auto-associative case that W = PA. Thus we have
the following result.

Theorem 16. (Generalization Properties) Assume in the auto-associative case
that ΣXX is invertible. For any learning algorithm that converges to a point where
B is optimized with respect to A and A is full rank (including all full rank critical
points), then for any vector x we have Wx = ABx = PAx and:

(5.48) E(x) = ||x− ABx||2 = ||x− PAx||2

Remark 6. Thus the reconstruction error of any vector is equal to the square of its
distance to the subspace spanned by the columns of A, or the square of the norm of
its projection onto the orthogonal subspace. The general hetero-associative case can
also be treated using Theorem 1. In this case, under the same assumptions, we have:
W = PAΣY XΣ−1

XX .

5.4 Non-Linear Autoencoders: Unrestricted Boolean

Case

5.4.1 Analysis of the Unrestricted Boolean Autoencoder

The unrestricted Boolean autoencoder where the classes A and B correspond to
unrestricted Boolean transformations is the most extreme form of non-linear au-
toencoder. In the purely Boolean case, we have F = G = {0, 1}, A and B are
unrestricted Boolean functions, and ∆ is the Hamming distance. The only case of
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interest is the compressive case when m < n (to avoid the identity with zero training
error) and 2m < K. If 2m ≥ K, it is easy to see that the training data can be im-
plemented with zero error by associating each training vector with a unique hidden
representation. Many variants of this problem can be obtained by restricting the
classes A and B of Boolean functions, for instance by bounding the connectivity of
the hidden units, or restricting them to particular classes of Boolean functions such
as threshold gates or monotone Boolean functions. The linear case discussed in the
previous section, where F = G = {0, 1} = F2 is the Galois field with two elements,
is also a special case of the general Boolean case.

1) Invariances.

Permutations in the Hidden Layer. Every solution is defined up to arbitrary
permutations of the 2m points of the hypercube Hm. This is because the Boolean
functions are unrestricted and therefore their lookup tables can accommodate any
such permutation, or relabeling of the hidden states.

Change of Coordinates in the Input/Output Layers. Likewise, any change
of coordinates in Hn that preserves Hamming distances (these are generated by
coordinate permutations and bit flips) leads to an equivalent problem.
2) Fixed Layer Solution. The best way to understand this autoencoder is to look
at what happens when one of the two transformations A or B is fixed. In each case,
one can assume that the transformations are defined on the training set alone, or on
the entire input space. Here we will choose the latter, although the reader should
also examine the other cases and the small adjustments they require.

First, note that since 2m < K, the mapping B clusters the K training points
in at most 2m clusters. The hidden vectors hi = B(xi) are the labels for each cluster
and the outputs A(hi) ought to be cluster centroids to minimize the reconstruction
error. It is easy to see that in order to be optimal B ought to be surjective, i.e.
use all the 2m possible hidden values. If a hidden value h is not used, A and B can
be improved by taking any training point xi with non-zero distortion and setting
B(xi) = h and A(h) = xi. By isolating xi into its own cluster, E(xi) decreases to
0, while E(x) remains unchanged for all the other training points, thus the overall
reconstruction error decreases. Similarly, one can see that in order to be optimal A
ought to be injective. Under the safe assumption that A is injective and B surjective,
we can now show that if A is fixed, then it is easy to find the optimal B. Conversely,
if B is fixed, it is easy to find the optimal A.

To see this more precisely, assume first that A is fixed and defined over the
entire space Hm. Then for each of the 2m Boolean vectors h1, . . . , h2M of the hidden
layer, A(h1) . . . , A(h2m) provide 2m distinct points (centroids) in the hypercube Hn.
One can build the corresponding Voronoi partition by assigning each point of Hn to
its closest centroid, breaking ties arbitrarily, thus forming a partition of Hn into 2m
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corresponding clusters C1, . . . , C2m , with Ci = CV or(A(hi)). The optimal mapping B∗

is then easily defined by setting B∗(x) = hi for any x in Ci = CV or(A(hi)) (Figure
5.4). Note that this provides not only a definition of B∗ over X , but also a unique
and optimal generalization for B∗ and hence W = A◦B∗ over the entire input space
Hn. The hetero-associative case can be handled similarly.

Conversely, assume that B is fixed and defined over the entire space Hn. Then
for each of the 2m possible Boolean vectors h1, . . . , h2m of the hidden layer, let
CB(hi) = {x ∈ Hn : B(x) = hi} = B−1(hi). To minimize the reconstruction error
over the training set, the optimal A∗ must map hi onto a point y of Hn minimizing
the sum of Hamming distances to points in X ∩ CB(hi). It is easy to see that the
minimum over the training set is realized by the component-wise majority vector
A∗(hi) = Majority[X ∩CB(hi)], breaking ties arbitrarily (e.g. by a coin flip) (Figure
5.5). Note that it is also possible to take the vector in the training set that is closest
to the centroid if it is required that the output vector be in the training set. The
optimal generalization over the entire hypercube, however, is achieved by taking the
centroid of the entire cluster CB(hi), rather than over the training vectors in the
cluster. Note again that this provides a definition of A∗ over the entire space Hm

with an option for optimizing the training error or the generalization error of W
over Hn. The centroid of the training vectors in a Voronoi cluster provides the op-
timum for training whereas the centroid of the entire cluster provides the optimum
for generalization. The hetero-associative case can be handled similarly.
3) Problem Complexity. In general, the overall optimization problem is NP-hard.
To be more precise, one must specify the regime of interest characterized by which
variables among n, m, and K are going to infinity. Obviously one must have n→∞.
If m does not go to infinity, then the problem can be polynomial, for instance when
the centroids must belong to the training set. If m → ∞ and K is a polynomial
in n, which is the case of interest in machine learning where typically K is a low
degree polynomial in n, then the problem of finding the best Boolean mapping (i.e.
the Boolean mapping that minimizes the distortion E associated with the Hamming
distance on the training set) is NP-hard, or the corresponding decision problem is
NP-complete. More precisely the optimisation problem is NP-hard in the regime
where m ∼ ε log2K with ε > 0. A proof of this result is given below.
4) The Landscape of E. In general E has many local minima (e.g with respect to
the Hamming distance applied to the lookup tables of A and B). Critical points are
defined to be the points satisfying simultaneously the equations above for A∗ and
B∗.
5) Clustering. The overall optimization problem is a problem of optimal cluster-
ing. The clustering is defined by the transformation B. Approximate solutions can
be sought by many algorithms, such as k-means, belief propagation [262], minimum
spanning paths and trees [595], and hierarchical clustering.
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6) Transposition. In the case of the Boolean autoencoder, it is not entirely clear
what a notion of transposition ought to be around optimal points. On the other
hand, consider an optimal point where B maps several points x1, . . . , xq onto a vec-
tor h in the hidden layer. Then A(h) must be the majority vector of x1, . . . , xq and
one should have B(A(h)) = h. Thus A(h) must be an element of B−1(h) and this
could be used to define some notion of “transposition” around optimal points.
7) Recycling. At any critical point, recycling outputs is stable at the first pass
so that for any x (AB)n(x) = AB(x) (and is equal to the majority vector of the
corresponding Voronoi cluster).
8) Learning Algorithms. A possible learning algorithm is again to alternate be-
tween the optimization of A and B, while holding the other one fixed.
9) Generalization. At any critical point, for any x, AB(x) is equal to the centroid
of the corresponding Voronoi cluster and the corresponding error can be expressed
easily.
10) External Targets. With the proper adjustments, the results above remain
essentially the same if a set of target output vectors y1, . . . , ym is provided, instead
of x1, . . . , xm serving as the targets. To see this, consider a deep architecture consist-
ing of a stack of autoencoders along the lines of [310]. For any activity vector h in
the last hidden layer before the output layer, compute the set of points C(h) in the
training set that are mapped to h by the stacked architecture. Assume, without any
loss of generality, that C(h) = {x1, . . . , xk} with corresponding targets {y1, . . . , yk}.
Then it is easy to see that the final output for h produced by the top layer ought
to be the centroid of the targets given by Majority(y1, . . . , yk).
11) Composition. The global optimum remains the same if additional Boolean
layers of size equal or greater to p are introduced between the input layer and the
hidden layer and/or the hidden layer and the output layer. Thus there is no re-
duction in overall distortion E by adding such layers. (see also Section 6.3). For
instance, consider a Boolean autoencoder network with layers of size n, p1, p, p1, n
(Figure 5.7) with n > p1 > p. Then any optimal solution of this network induces
an optimal solution for the corresponding n, p, n autoencoder and conversely, any
optimal solution of the n, p, n autoencoder induces (usually in many ways) an op-
timal solution of the n, p1, p, p1, n autoencoder. Finding an optimal solution for
the n, p1, n autoencoder network, and combining it with the optimal solution of
the p1, p, p1 autoencoder network derived using the activity in the hidden layer of
the first network as the training set, exactly as in the case of stacked RBMs, is a
reasonable strategy but it is not clear that it is guaranteed to provide the global
optimum of the n, p, n problem in all cases. In other words, clustering the data
first into 2p1 clusters, and then clustering these clusters into 2p clusters, may not
always provide the best clustering of the data into 2p clusters. However, in practice,
each clustering problem is NP-complete and thus combining clustering algorithms
in a hierarchical fashion, or equivalently stacking autoencoders, should provide a
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reasonable approximate algorithm.

Figure 5.4: A(n,m, n) Unrestricted Boolean Autoencoder with Fixed Transformation A.
For each vector h, in the hidden layer, A produces an output vector A(h). The vectors
A(h) induce a Voronoi partition of the output space, hence of the input space. Any vector
x ∈ Fn is in a partition of the form A(h), for some h. In order to minimize the final
distortion, one must have B∗(x) = h.

5.4.2 Boolean Autoencoder Problem Complexity

To deal with the hypercube clustering problem one must first understand which
quantities are allowed to go to infinity. If n is not allowed to go to infinity, then the
number m of training examples is also bounded by 2n and, since we are assuming
p < n, there is no quantity that can scale. Thus by necessity we must have n→∞.
We must also have m→∞. The case of interest for machine learning in general is
when m is a low degree polynomial of n. Obviously the hypercube clustering problem
is in NP, and it is a special case of clustering in Rn. Thus the only important problem
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Figure 5.5: A(n,m, n) Unrestricted Boolean Autoencoder with Fixed Transformation B.
As shown, consider the set of vectors B−1(h) in the input space that are mapped to the
same vector vector h in the hidden layer. Then the vector A(h) must have minimal average
Hamming distance to all the vectors in B−1(h). This is achieved if A∗(h) is the Majority
vector of B−1(h).

to be addressed is the reduction of a known NP-complete problem to a hypercube
clustering problem. For the reduction, it is natural to start from a known NP-
complete graphical or geometric clustering problem. In both cases, one must find
ways to embed the original problem with its original metric into the hypercube with
the Hamming distance.

Problem: HYPERCUBE CLUSTERING

Instance: K binary vectors x1, . . . , xK of length n and an integer k.

Question: Can we identify k binary vectors c1, . . . , ck of length n (the centroids)
and a function f from {x1, . . . , xK} to {c1, . . . , cK} that minimizes the distortion
E =

∑K
t=1 ∆(xt, f(xt)) where ∆ is the Hamming distance?

The hypercube clustering problem is NP hard when k ∼ Kε (ε > 0).
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Proof. To sketch the reduction, we start from the optimization problem of clustering
K points in the plane R2 using cluster centroids and the L1 distance, which is NP-
hard [447] by reduction from 3-SAT [271] when k ∼ Kε (ε > 0) (see also related
results in [430] and [651]). Without any loss of generality, we can assume that the
points in these problems lie on the vertices of a square lattice. Using the theorem in
[301], one can show that a n1× n2 square lattice in the plane can be embedded into
the hypercube Hn1+n2 (i.e. n = n1 + n2). More precisely, an explicit embedding is
given in Figure 5.6 associating one distinct hypercube component to each horizontal
step and each vertical step in the lattice. It is easy to check that the L1 or Manhattan
distance between any two points on the square lattice is equal to the corresponding
Hamming distance in Hn1+n2 . Thus a solution of the clustering problem on the
hypercube would yield a solution of the clustering problem on the 2D lattice. This
polynomial reduction completes the proof that if the number of cluster satisfies
k = 2m ∼ Kε, or equivalently m ∼ ε log2K ∼ C log n, then the hypercube clustering
problem associated with the Boolean autoencoder is NP-hard. If the number k of
clusters is fixed and the centroids must belong to the training set, there are only(
K
k

)
∼ Kk possible choices for the centroids inducing the corresponding Voronoi

clusters. This yields a trivial, albeit not efficient, polynomial time algorithm.

There is another significant result on the NP-completeness of learning in neural
networks. In [129], it is shown that the problem of training an A(n, 2, 1) architec-
ture of threshold gates, to achieve zero-error on a training set of size O(n) is NP-
complete. This remains true in the case of number of variations, for instance even
if the weights are restricted to be binary. None of these NP-completeness results
should worry practitioners, however, for several well-known reasons. In particular,
for many applications, zero-error is not achievable, but also not necessary .

5.5 Other Autoencoders and Autoencoder Prop-

erties

5.5.1 Threshold Gate, Sigmoidal, and Mixed Autoencoders

Within the general framework described above, a number of different autoencoders
can be considered with different constraints on F and G, or different constraints
on A and B, for instance by varying the transfer functions in the hidden layer
(e.g. Boolean unrestricted, Boolean linear threshold, linear, sigmoidal), the transfer
functions in the output layer (e.g. Boolean unrestricted, Boolean linear threshold,
linear, sigmoidal), the kinds of training data (binary versus real-valued), and the er-
ror function (e.g. Hamming, relative entropy, quadratic). We leave it as an exercise
to examine some of the main combinations, however many of these can be under-
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Figure 5.6: Embedding of a 3 × 4 Square Lattice onto H7 by Edge Coloring. All edges
in the same row or column are given the same color. Each color corresponds to one of
the dimensions of the 7-dimensional hypercube. For any pair of points, their Manhattan
distance on the lattice is equal to the Hamming distance between their images in the
7-dimensional hypercube.

stood, at least at an intuitive level, using the results derived above in the linear and
unrestricted Boolean case. A simple example is when the input and output layers
are real F = R and the hidden layer is binary G = {0, 1} (and ∆ = L2

2). It is easy
to check that in this case, as long as 2m < K, the autoencoder aims at clustering
the real data into k = 2m clusters and all the results obtained in the Boolean case
are applicable with the proper adjustments. For instance, the centroid associated
with a hidden state h should be the center of mass of the input vectors mapped onto
h. In general, the optimization decision problem for these autoencoders is also NP-
complete and, more importantly, from a probabilistic view point, they correspond
exactly to a mixture of k-Gaussians model with hard cluster assignments in the
deterministic case, and soft cluster assignments in the probabilistic case. More gen-
erally, as pointed out in [159], a number of classical problems and algorithms can be
recovered by forcing one of the two classes A or B to be the class of linear functions,
leaving the other one fully unrestricted (or with other non-linear constraints).

Within the general class of Boolean autoencoders, one can study different
subclasses by restricting the sets of allowed Boolean functions. We have seen one
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such example in the case of the linear autoencoders over GF(2). Another interesting
example corresponds to the Boolean autoencoder made exclusively of threshold gates
[68]. These can be viewed as the limiting case of standard sigmoidal neural network
autoencoders when the gain of the sigmoidal functions is taken to infinity. Another
interesting restricted class of Boolean functions is the class of monotone functions,i.e.
Boolean functions that can be built using only the AND and OR operators (these
are called monotone because if the number of ones in the input is increased, the
output can only remain identical, or go from 0 to 1.)

More importantly for this book, the solution of the real-valued linear autoen-
coder and the Boolean unrestricted autoencoder provide at least an intuitive picture
of how learning may proceed in a compressive neural network autoencoder with sig-
moidal transfer functions in the hidden layer. In the early stages of training, when
the weights are small, the hidden neurons operate in their linear regime and learning
may proceed toward PCA. As the weights increase and the hidden neurons begin to
operate in the saturated portions of the sigmoidal transfer functions, learning may
proceed towards optimal clustering in, or near, the PCA space.

5.5.2 Inverting, Redressing, and De-Noising Autoencoders

As a starting point, consider having a data set D = {x1, . . . , xK} where the points
xi are in a set A, and A ⊂ Rn or A ⊂ Hn (H = {0, 1}). Assume that there is
a (easily computable) function f from A to B, where B ⊂ Rp or B ⊂ Hp. We
can use an A(n,m, p) architecture to try to learn f using the pairs (x, f(x)) and,
more importantly, an A(p,m, n) architecture to learn f−1 when f can be inverted. If
p = n, this leads to several different kinds of A(n,m, n) autoencoders which somehow
interpolate between the auto-associative and the hetero-associative cases. In these
inverting autoencoders, the input f(x) can often be viewed as a perturbed version
of the data and the network is trained to restore or redress the input towards the
unperturbed version x = f−1f(x). For instance if f is a rotation by α degrees, the
corresponding redressing autoencoder would learn to rotate by −α degrees. Note
that f does not need to be a function, it can also be a relation or process, as long as
it is injective (i.e. f(x) can take more than one value, but f(x) = f(y) must imply
x = y). When the function or process f corresponds to the addition of some kind
of noise (e.g. Gaussian noise, random erasures) to the data, this approach is often
called denoising autoencoder [660, 661].

Thus denoising autoencoders can be trained with the purpose of cleaning up
noisy data, or reconstructing data (e.g. images or text) with missing or occluded
entries (pattern completion). Denoising autoencoders can also be viewed in the
context of regularization or data augmentation in order to prevent overfitting. This
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is particularly relevant if the autoencoder has a large number of parameters relative
to the training data available initially. The denoising procedure can be viewed as
a form of data augmentation by adding new training data, or as a form of dropout
applied to the input layer [605, 91] (see next chapter). In the linear and unrestricted
Boolean cases with m < n the denoising autoencoder can be analyzed with the
techniques described above, since these techniques work in the hetero-associative
case, where the inputs and the targets differ.

Related to denoising autoencoders is also the idea of deblurring or training
autoencoder architectures to produce high-resolution version of low resolution in-
puts. It is also possible to train autoencoder architectures in the reverse direction,
to produce low resolution versions of the input in the output layer through a bottle
neck. This is the basic idea behind the U-Net architectures for image segmentation
[544] where images are presented in the input and segmented images are used as the
targets for the output layer.

Along these lines, there are other ways for using an A(n,m, n) architecture with
supervised learning, where the input and the output target are slightly different and
related through a simple process. For example, when dealing with sequences or time
series, one could learn to predictxt+1 as a function of xt. More generally, for a given
fixed window of size k, one could learn to predict: xt+1, xt+2, . . . , xt+k, xt+k+1 as a
function of the input xt, xt+1, . . . , xt+k where the size of the input and output layers
is now kn(e.g. [498] and references therein). All the variations in this subsection are
examples of self-supervised learning, where supervised learning is used with inputs
and targets that are both derived from the original data through some operations.

5.5.3 Probabilistic Autoencoders and Variational Autoen-
coders

Probabilistic autoencoders with shapeA(n,m, n) (auto-associative), or evenA(n,m, p)
(hetero-associative) can be incorporated into the above framework by considering
that the input I, hidden H, or output O vectors are random variables and A and B
represent classes of possible conditional distributions P (O|H) and P (H|I) over the
right spaces. For instance, in the unrestricted probabilistic case, A and B are the
classes of all possible conditional distributions over the right spaces. If all the units
are binary and m < n, one obtains the binary compressive unrestricted probabilistic
autoencoder where each A consists of a table of conditional probability distributions
P (O = y|H = h), where O denotes the binary output random variable and H the
binary hidden layer random variable, and each B consists of a table of conditional
probability distributions P (H = h|I = x). The most relevant case here is when neu-
ral networks are used to parameterize one, or both, of the conditional distributions
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above. As described in Chapter 3, this can easily be done via sampling. A special
case of this approach is the variational autoencoder described below. Different error
functions can be used in the output layer. For instance, in the auto-associative case,
one can consider the average error:

(5.49) E =
∑
x

∑
y

P (I = x)P (O = y|I = x)∆(x, y)

where ∆(x, y) measures the degree of distortion between x and y (e.g. Hamming
distance, quadratic error) and P (O = y|I = x) =

∑
h P (H = h|I = x)(P (O =

y|H = h), or the average relative entropy:

(5.50) E = −
∑
x

P (I = x) logP (O = x|I = x)

or the relative entropy between P (I = x) and P (O = y).

For brevity we will not further discuss these autoencoders here but it should be
clear that some of the previous results can be extended to this case. For instance, the
binary compressive unrestricted probabilistic autoencoder has the same invariances
as the unrestricted Boolean autoencoder and similar considerations can be made
for the unrestricted real-valued probabilistic autoencoder. The binary compressive
unrestricted probabilistic autoencoder implements probabilistic clustering over the
2m clusters indexed by the hidden layer activities in the sense that each input x has
some probability P (H = h|I = x) of being associated with the cluster labeled by h.

With a compressive layer, in both the auto-and hetero-associative case, it is
also useful to consider the error function:

E = I(X,H)− βI(H,T )

to be minimized over the free, or constrained, or parameterized, set of conditional
distributions P (H|I). Here β is positive weighting parameter which controls the
relative role of the mutual information I between the input, renamed X to avoid any
confusion, and the hidden variable H, and between the H and a target distribution
variable T . When T = X, one simply seeks to maximize the mutual information
between X and H. These probabilistc autoencoders correspond to the bottle-neck
method [629] and the Blahut-Arimoto alternate optimization algorithm [125, 43] to
try to find the optimal solution.

Note that since deterministic autoencoders can be viewed as special cases of
probabilistic autoencoders, learning in probabilistic autoencoders is in general also
NP-complete.
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Variational Autoencoder

The variational autoencoder [368] is a special case of probabilistic autoencoder where
the hidden layer is probabilistic. As we have seen in Chapter 3, the hidden layer
of a feedforward neural network can be made stochastic by sampling. Thus in the
variational autoencoder, the hidden layer vector H is a deterministic function of
the input vector I. This function is parameterized by an encoding neural network.
This vector H represents the parameters of a latent distribution over a latent space.
During the forward propagation H is used to produce a sample H̃. The final output
O is a deterministic function of H̃, which is also parameterized by a generative
neural network. Once trained, the generative portion of the variational autoencoder
can be used to provide a generative model of the data. Variational autoencoders
can be trained by gradient descent using the methods described in the next chapter.
As we shall see, the propagation of gradients through stochastic layers is facilitated
if one can provide a simple parameterization of the relationship between the hidden
activities and the corresponding sample. As a simple example, imagine that H
is a two-dimensional vector encoding the mean µ and standard deviation σ of a
normal distribution N (µ, σ) over the latent space. Then, the sample H̃ can be
parameterized in the form: H̃ = µ + εσ, where the sampling variable ε follows a
standard normal N (0, 1) distribution.

5.5.4 Expansive Autoencoders

When the hidden layer is larger than the input layer (m > n)and F = G, there
is in general an optimal 0-distortion solution to the autoencoder problem based
on using the identity function between the layers. Thus in general this case is
interesting only if additional constraints are added to the problem to prevent trivial
solutions. These can come in many forms, for instance in terms of restrictions
on the classes of functions A and B,in terms of noise and robustness, or in terms
of regularization. Restrictions could exclude the identity function and any other
closely related functions. Noise could lead to the need for additional “parity check”
bits, as in coding and communication theory. Regularization could be used, for
instance to ensure sparsity of the hidden-layer representation, or to constrain the
Jacobian or the Hessian of the data representation [435, 194, 539]. When these
constraints force the hidden layer to assume only k different values then some of the
previous analyses hold and the problem may reduce to clustering into k clusters.
Another possibility for creating large hidden layer is the horizontal composition of
autoencoders (see below). It is worth mentioning that expansive layers with sparse
encoding are frequently found in the early stages of biological sensory systems [57].
While sparsity can be enforced artificially by regularization (e.g. L1 regularization),
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it is more interesting to explore biophysical or computational reasons for why layer
size expansion, coupled with sparse encoding, could be advantageous in a physical
neural system.

5.5.5 Composition of Autoencoders

Autoencoders can be composed both vertically (Figure 5.7) and horizontally. When
autoencoders are stacked vertically, the hidden layer at one level of the stack can
be used as the input layer for the next level of the stack. Thus the stack can be
trained in an unsupervised layer from bottom to top. This approach can be used to
initialize the layers of a deep architecture in an unsupervised way. When the hidden
layers of the autoencoders are compressive, the results in this section suggest that
the stack approximates some kind of hierarchical clustering of the data (at least
when the hidden layers are binary, or close to binary when sigmoidal functions are
in their saturated regimes). This can be viewed as a way of extracting increasingly
more abstract representations of the data, as one goes up the hierarchy.

Figure 5.7: Left: Compressive autoencoder with multiple hidden layers. Middle and
right: Vertical Composition of Autoencoders.

In addition to vertical composition, autoencoders can also be composed hori-
zontally in various ways. For instance, two autoencoders with architecturesA(n1,m1, n1)
and A(n2,m2, n2) can be trained and combined into an A(n1 +n2,m1 +m2, n1 +n2)
architecture. It is also possible to share the same input and output layer and combine
an A(n,m1, n) autoencoder with an A(n,m2, n) autoencoder in order to create an
A(n,m1 +m2, n) autoencoder with an expanded hidden layer representation (Figure
5.8), which in turn can be fed to other subsequent layer of the overall architecture.
If m1 + m2 < n, the expanded hidden layer representation can still be compres-
sive. Differences in the two hidden representations associated with the layers of
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size m1 and m2 can be introduced by many different mechanisms, for instance by
using different learning algorithms, different initializations, different training sam-
ples, different learning rates, or different distortion measures. It is also possible to
envision algorithms that incrementally add (or remove) hidden units to the hidden
layer [535, 387]. In the linear case over R, for instance, a first hidden unit can be
trained to extract the first principal component, a second hidden unit can then be
added to extract the second principal component, and so forth.

Figure 5.8: Horizontal Composition of Autoencoders to Expand the Hidden Layer Rep-
resentation.

5.6 Exercises

5.1 Consider the linear autoencoder over the real numbers. Show that all the infor-
mation about the data is contained in the mean and covariance matrix of the data.
Show that the standard least square error function is a quadratic function (parabola)
in each individual weight, if all the other weights are assumed to be constant.

5.2 Consider the A(n,m, n) linear autoencoder over the real numbers with matrices
A and B. Derive the gradient descent equation for the top matrix A using the
results of the chapter on shallow learning. Derive the gradient descent equations for
the matrix B (this becomes easy after seeing the chapter on backpropagation).

5.3 Consider the A(n,m, n) linear autoencoder over the real numbers with matrices
A and B. Show directly that if B is fixed, the problem is convex in A and similarly if
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A is fixed the problem is convex in B. Derive the gradient descent learning equations
for A and B in matrix form. Convert the corresponding difference equations into
a system of differential equations. In general, does the system have a closed form
solution? If not, can you find a closed form solution in some special cases?

5.4 In this chapter, we solved the linear autoencoder in a coordinate-independent
way. An alternative approach is to solve the problem in a specific coordinate system,
and then generalize the approach. Solve the linear autoencoder problem when the
data mean is zero and the covariance matrix is diagonal. Solve the linear autoencoder
problem when the data mean is not zero and the covariance matrix is diagonal.
Generalize these results in order to solve the linear autoencoder problem when the
data mean is zero, or non-zero, and the covariance matrix is not diagonal.

5.5 Consider a linear A(n,m, n) autoencoder over the real numbers with partial
connectivity, i.e. some of the entries of the matrices A or B are forced to be 0 at all
times. Show that the total number of connectivity patterns is given by: 2nm2nm. Is
there a choice of a partial connectivity pattern for which the corresponding linear
autoencoder can exhibit true spurious local minima (i.e. local minima where the
quadratic error is strictly larger than the error achieved at the global minima)?

5.6 Consider a linear A(n,m, n) autoencoder over the real numbers with a training
set of the form I(k) for k = 1, . . . , K and matrices A and B. Thus the output has
the form: O = ABI, and the quadratic error function is given by: E =

∑
k ||I(k)−

ABI(k)||2/2. Write down, in matrix form, the learning equations for A and B under
simple Hebbian learning. Write down in matrix form the learning equations for A
and B under gradient descent learning. Convert all the previous learning equations
into differential equations and compare the two forms of learning.

5.7 Study the linear A(n,m, n) autoencoder problem over the complex field C.

5.8 Study the linear A(n,m) regression problem over any finite field, for instance
over the finite field F2 with two elements. Study the linear A(n,m, n) autoencoder
problem over any finite field, for instance over F2.

5.9 Consider the A(n,m, n) autoencoder problem with linear threshold gates in
the hidden and output layers, the Hamming distance as the error function E , and a
training set of polynomial size in n and m. Is the problem of minimizing E NP-hard?

5.10 Consider the A(n,m, n) autoencoder problem with monotone Boolean gates in
the hidden and output layers, the Hamming distance as the error function E , and a
training set of polynomial size in n and m. Is the problem of minimizing E NP-hard?
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5.11 Consider an unrestricted Boolean autoencoder A(n,m, n) where the K binary
training examples are generated as follows. First, k1 centroids are generated using
independent Bernoulli coin flips with probability p1 = 0.5. Then, starting from each
centroid, k2 examples are generated by perturbing the centroid using independent
Bernoulli coin flips with small probability p2 = ε of changing the corresponding bit,
so that K = k1k2. Examine different regimes for N , M , K, k1 and ε and estimate
the expected training and generalization errors.

5.12 Consider an unrestricted Boolean autoencoder A(n,m, n) where the connec-
tivity is local. In general, compared to the fully connected case, is it easier or harder
to solve it? Why? Which algorithm would you use to try to minimize the Hamming
error?

5.13 Consider different compressive autoencoders by varying the type of units (e.g.
unrestricted Boolean, threshold, sigmoidal, linear) in the hidden layer or the output
layer, the kind of training data (binary or real-valued), and the error function (e.g.
Hamming distance, relative entropy, quadratic). Using the results in the chapter,
for each autoencoder type develop an intuitive understanding of its behavior and
confirm or disprove your intuition by mathematical analyses or simulations.

5.14 Formalize a notion of binary, compressive, unrestricted, probabilistic A(n,m, n)
autoencoder and analyze its properties. Here unrestricted means that any proba-
bilistic table between input and hidden vectors, or hidden and output vectors, can
be realized.

5.15 Assume that the n-dimensional input vectors x of a linear channel have a
normal distribution with mean zero and covariance matrix Σxx. The output of the
channel are constrained to be p-dimensional vectors y of the form y = Bx for some
p× n matrix B with p < n. The differential entropy of x is defined by:

(5.51) H(x)−
∫
P (x) logP (x)dx

Prove that:
1) y has a normal distribution with mean 0 and covariance matrix Σyy = BΣxxB

t.
2)

(5.52) H(x) =
1

2
log [(2πe)n det(Σxx)]

and
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(5.53) H(y)
1

2
log
[
(2πe)p det(BΣxxB

t)
]

3) The conditional distribution of x given y is normal with mean: ΣxyΣyy
−1y, and

covariance matrix: Σ = Σxx − ΣxyΣyy
−1Σyx.

4) The conditional entropy of x given y is given by:

(5.54) H(x|y) =
1

2
log
[
(2πe)n−pγ1γ2 . . . γn−p

]
where γ1 ≥ γ2 ≥ . . . ≥ γn−p > 0 are the non-zero eigenvalues of Σ.
5) Maximizing I(x, y) is equivalent to minimizing H(x|y) and this is achieved by
PCA, i.e. by having B = CU t

p where C is an invertible p×p matrix and U is a matrix
of column vectors Up = [u1, . . . , up]. Here u1, . . . , up denote p principal normalized
eigenvectors of Σxx with eigenvalues λ1, . . . , λp.
6) At this maximum:

(5.55) IPCA(x, y) =
1

2
log [(2πe)pλ1λ2 . . . λp]

5.16 Derive critical or consistency relations for the bottleneck method in simple
cases, for instance, when the variables have Gaussian distributions.

5.17 In a variational autoencoder, assume that the hidden variable H encodes the
parameters of a Beta distribution

B(a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

How can one parameterize a sample H̃ ∈ [0, 1]?

5.18 Prove a variational bound for the variational autoencoder.
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