
Chapter 3

Shallow Networks and Shallow
Learning

53

54 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

In this chapter we focus on layered feedforward shallow networks, i.e. feed-
forward networks with no hidden units, and the corresponding shallow learning
problem. Thus, we consider A(n, 1) and A(n,m) architectures. We study the ques-
tions of design, capacity, and learning in that order. We begin by showing that the
Bayesian statistical framework leads to a fairly complete theory of how to design
such networks in the supervised learning setting. In particular, it provides a prin-
cipled and elegant way to derive the transfer functions and the error functions in
both the regression and classification cases, in a way that leads to the same simple
gradient equations across the cases.

3.1 Supervised Shallow Networks and their De-

sign

We begin with the supervised learning framework with a single unit for regression
or classification problems, or k units for classification into k classes. Assume that
the data consists of K input-target pairs: D = {(I(t), T (t)) t = 1, . . . , K} and w
represents the weights. Then, assuming the data pairs are independent of each other
and the inputs are independent of the weights, the likelihood has the form:

(3.1) P (D|w) =
K∏
t=1

P (I(t), T (t)|w) =
K∏
t=1

P (T (t)|I(t), w)P (I(t)|w)

so that:

(3.2) P (D|w) =
K∏
t=1

P (T (t)|O(t))P (I(t))

where O is the output of the network. Throughout this section, probabilities for
continuous values should be written with the usual notation P (x < X < x+ ∆x) =
P (x)∆x. Here we omit the ∆x terms as they play no role in the calculations and
the final answers. For simplicity, we also assume that all the inputs have the same
probability (P (I(t) = c) Thus, in this case, the maximum likelihood (ML) estimation
problem becomes:

(3.3) min
w
E = min

w

K∑
t=1

E(t) = min
w

[
−

K∑
t=1

logP (T (t)|O(t))

]

3.1. SUPERVISED SHALLOW NETWORKS AND THEIR DESIGN 55

where E(t) = − logP (T (t)|O(t) can be viewed as an error function measuring the
mismatch between outputs and targets for each training example. The corresponding
maximum a posteriori (MAP) problem is given by:

(3.4) min
w
E ′ = min

w
[−

K∑
t=1

logP (T (t)|O(t))− logP (w)]

Next, we must now specify the probabilistic model needed to compute P (T (t)|O(t),
as well as P (w). To simplify the notation, we treat a single generic example, drop-
ping the index t. At the end, this procedure will give the error and learning algo-
rithms corresponding to online learning, i.e. example by example. Alternatively,
for batch or mini-batch learning, one must remember to sum the corresponding
expressions over the corresponding examples.

3.1.1 Regression

In the case of a regression problem, one can use a simple Gaussian model:

(3.5) P (T |O) =
1√
2πσ

e−(T−O)2/2σ2

As a result, the ML equation minw− logP (T |O) is equivalent to the usual least
square problem:

(3.6) min
w
E = min

w

1

2
(T −O)2

In the case of regression, the targets are not necessarily bounded, and so it is natural
to use a linear unit with O = S =

∑
wiIi. In this case:

(3.7) ∂E/∂S = −(T −O)

Note that more complex models, where for instance σ is not the same for all the
points, can easily be incorporated into this framework and would lead to a weighted
least square problem.

56 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

3.1.2 Classification

In the case of binary classification, one can use a simple binomial model, so that:

(3.8) P (T |O) = OT (1−O)1−T

As a result, the ML equation minw− logP (T |O) is equal to:

(3.9) min
w
E = min

w
− [T logO + (1− T) log(1−O)]

This is equivalent to minimizing the relative entropy or Kullback-Leibler (KL) di-
vergence between the distributions T and O which is given by:

(3.10) KL(T,O) = T log T + (1− T) log(1− T)− T logO − (1− T) log(1−O)

In the case of binary classification, since the output O is interpreted as a probability,
it is natural to use a logistic unit with O = f(S) = 1/(1 + e−S). As a result:

(3.11)
∂E
∂S

=
∂E
∂O

∂O

∂S
= −(T −O)

3.1.3 k-Classification

In the case of classification into k-classes, the straightforward generalization is to
use a multinomial model, so that:

(3.12) P (T |O) =
k∏
i=1

OTi
i

As a result, the ML equation minw− logP (T |O) is given by:

(3.13) min
w
E = min

w
−
[

k∑
i=1

Ti logOi

]
This is equivalent to minimizing the relative entropy or Kullback-Leibler (KL) di-
vergence between the distributions T and O which is given by:

3.1. SUPERVISED SHALLOW NETWORKS AND THEIR DESIGN 57

Table 3.1: Summary table for shallow supervised learning for the problems of re-
gression, classification into two classes, and classification into k
classes. The corresponding probabilistic models yield the corresponding error func-
tions associated with the negative log likelihood of the data given the weight param-
eters. Together with the sensible choice of transfer function f , this leads to simple
and identical error derivatives for learning.

Problem Prob. Model Error E Unit ∂E/∂S
Reg. Gaussian (T −O)2/2 (Quadratic) Linear −(T −O)

2-Class. Binomial −T logO − (1− T) log(1−O) (KL) Logistic −(T −O)

k-Class. Multinomial −∑k
i=1 Ti logOi (KL) Softmax −(T −O)

(3.14) KL(T,O) =
k∑
i=1

Ti log Ti −
k∑
i=1

Ti logOi

In the case of k-class classification, it is natural to use a softmax unit, which gen-
eralizes the logistic unit (k = 2). With a softmax unit: Oi = eSi/

∑
j e

Sj , where for
every i, Si =

∑
j wijIj. As a result, for every i = 1, . . . , k we have:

(3.15)
∂E
∂Si

=
∑
j

∂E
∂Oj

∂Oj

∂Si
= −(Ti −Oi)

after some algebra and using the formula for the derivatives from the previous chap-
ter (∂Oi/∂Si = Oi(1−Oi) and ∂Oj/∂Si = −OiOj for j 6= i).

Thus, in short, the theory dictates which error function and which transfer
function to use in both regression and classification cases (Table 3.1). In regression
as well as binary classification, the gradient descent learning equation for a single
unit can be written as:

(3.16) ∆wi = −η ∂E
∂wi

= −η ∂E
∂S

∂S

∂wi
= η(T −O)Ii

and similarly in k-classification.

3.1.4 Prior Distributions and Regularization

The Bayesian framework allows one to put a prior distribution on the parameters w.
Consider a single unit with weight vector w = (wi) with 0 ≤ i ≤ n including the bias.

58 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

A standard approach is to assume uniform or Gaussian prior distributions on the
synaptic weights. For instance, in the case of a zero-mean, spherical Gaussian prior
distribution (i.e the product of n independent, identical, one-dimensional Gaussian
distributions):

(3.17) P (w) =
1√

(2π)nσ2n
e−

∑
w2
i /2σ

2

In the MAP optimization approach, this adds a term of the form
∑

iw
2
i /2σ

2 to the
error function and the minimization process. The variance σ2 determines the relative
importance between the terms derived from the likelihood and the prior. Everything
else being equal, the larger the value of σ the smaller the influence of the prior. The
influence of the prior is to prevent the weights from becoming too large during
learning, since large weights incur a large penalty

∑
iw

2
i . From an optimization

framework, adding terms to the function being optimized to constrain the solutions
is called regularization. In this sense, there is an equivalence between using priors
and using regularizing terms. The Gaussian prior leads to a quadratic regularizer or
an L2 penalty term. From a learning standpoint, in the case of gradient descent, the
presence of a Gaussian prior adds a term −wi/σ2 to the gradient descent learning
rule for wi. This is also called “weight decay” in the literature.

Of course other priors or regularizing terms can be applied to the weights.
Another regularization that is often used, instead of or in combination with L2
regularization, is the L1 regularization which adds a term of the form: λ

∑
i |wi| to

the error function. More generally, one can define Lp regularization for any p ≥ 0
based on Lp norms. Other prior distributions or regularization functions can be
used in specific cases, for instance in the case where the weights are constrained to
have binary values or, more generally, to be limited to a finite set of possible values.

L1 regularization tends to produce sparse solutions where, depending on the
strength of the regularizer, a subset of the weights are equal to 0. This can be
desirable in some situations, for instance to increase interpretability. Within sparse
Bayesian priors alone, L1 is just one of many approaches. The L1 approach was
developed early in [566] in relation to geology applications. It was further developed
and publicized under the name of LASSO (least absolute shrinkage and selection
operator) [627] (see also [628]). Another example of continuous “shrinkage” prior
centered at zero is the horseshoe prior [164, 165]. However technically these contin-
uous priors do not have a mass at zero. Thus another alternative direction is to use
discrete mixtures [454, 276] where the prior on each weight wi consists of a mixture
of a point mass at wi = 0 with an absolutely continuous distribution.

While priors are useful and can help prevent overfitting, for instance in situa-
tions where the amount of training data is limited, the real question is whether a full

3.1. SUPERVISED SHALLOW NETWORKS AND THEIR DESIGN 59

Bayesian treatment is possible or not. For instance, for prediction purposes, a full
Bayesian treatment requires integrating predictions over the posterior distribution.
The question then becomes whether this integration process can be carried in exact
or approximate form, and how computationally expensive it is. This may not be a
problem for single units; but for large networks, in general a full Bayesian approach
cannot be carried analytically. In this case, approximations including Markov Chain
Monte Carlo methods become necessary. Even so, for large networks, full Bayesian
treatments remain challenging and methods based on point-estimates are used in-
stead. The general area at the intersection of Bayesian methods and neural networks
continues to be an active research area (e.g.[425, 426, 473, 401]).

3.1.5 Probabilistic Neural Networks

So far we have described feedforward neural networks as being completely determin-
istic in how they operate: for a given input they always produce the same output in
a deterministic way. Whenever desirable, it is easy to create probabilistic neural net-
works where the input-output relationship is not deterministic, but rather governed
by a joint probability distribution determined by the weights of the networks and
possibly a few other noise or sampling parameters. Stochasticity can be introduced
in different layers of the architecture.

Stochasticity in the input layer is obtained by sampling. If the input is given by
the vector I = (I1, . . . , In), one can interpret each component as being the mean of
a normal distribution with standard deviation σ (or any other relevant distribution)
and sample accordingly to produce a new input vector I ′ = (I1 + η1, . . . , In + ηn)
which is then fed to the network, in lieu of I. In this case, the noise terms ηi are
sampled from a normal distribution N (0, σ2).

Likewise, stochasticity in the output, or any hidden layer, is obtained by in-
terpreting the neurons activities as parameters of a distribution and then sampling
from the corresponding distribution (see also [100]). For instance, in the case of
a linear unit, its activity can be interpreted as the mean of a normal distribution,
and a sample from that normal distribution can be used as the stochastic output.
The standard deviation of the normal distribution is either an external parameter,
or an output computed by a different unit. In the case of a logistic unit, its output
can be interpreted as a Bernoulli probability p which can be sampled, producing a
stochastic output equal to 1 with probability p, and 0 with probability q = 1 − p.
Introducing such stochasticity in the hidden layer is the key ingredient behind, for
instance, variational autoencoders [368].

Other forms of stochasticity can be obtained by adding other forms of noise
to the units, or to the connections, as is done for instance during the application of

60 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

the dropout algorithm [605, 91] during learning. This algorithm is studied in a later
chapter.

3.1.6 Independence of Units During Learning in Shallow
Networks

Consider a feedforward shallow network with n0 inputs and n1 output units. Even
if the units see the same inputs, they operate independently of each other in the
sense that the output of any unit does not depend on the output of any other
unit. Unless there is a specific mechanism that couples the units during learning,
the units learn independently of each other. In particular, if learning is based on
minimizing an error function of the form E =

∑n1

i=1 Ei where Ei depends on Oi (and
possibly a corresponding target Ti in the supervised case) but not on Oj for j 6= i,
then each unit will learn independently of all the other units. This result, which of
course is not true for deep networks, implies that in shallow networks it is enough to
understand the general behavior of one unit in order to understand the behavior of
the entire network. It must be noted that this result is very general and not tied to
the existence of an error function. As we shall see in the chapter on local learning,
it is sufficient that the learning rule be local for the units to learn independently of
each other in a network with a single adaptive layer.

Now that we have addressed how to design single layer architectures we can
turn to questions of capacity.

3.2 Capacity of Shallow Networks

3.2.1 Functional Capacity

Because of the independence of the units in a single layer network, it is sufficient to
understand the capacity of a single unit. If the activation is linear and the transfer
function is the identity (linear unit) then the unit implements a simple linear (or
affine) function of the inputs. If the transfer function is the sgn or Heaviside function,
or even a sigmoidal function, then we can still visualize the operation of the neuron
as being determined by a hyperplane dividing Rn or Hn into two regions, with the
value of the output being +1 on one side of the hyperplane–or growing towards
+1 in the sigmoidal case–and conversely on the opposite side, replacing +1 with
0 or -1, depending on the exact transfer function being used. A similar picture is
obtained if the activation is ReLU, or even polynomial by replacing the hyperplane
by a polynomial surface. Thus, at least in the shallow case, it is possible to get a

3.2. CAPACITY OF SHALLOW NETWORKS 61

fairly clear mental picture of the class of functions that can be implemented.

In order to be more quantitative, next we focus primarily on the cardinal
capacity of single linear and polynomial Boolean threshold gates. Linear and poly-
nomial threshold functions have been extensively used and studied in complexity
theory, machine learning, and network theory; see, for instance, [63, 66, 64, 154,
149, 562, 379, 587, 48, 115, 19, 372, 373, 226, 485, 486, 355] An introduction to
polynomial threshold functions can be found in [484, Chapter 5], [39, Chapter 4],
and [562]. In the Boolean setting, we know that there are 22n Boolean functions of
n variables. Some of them can be implemented as linear threshold gates, and some
cannot. Thus we wish to estimate the fraction of such Boolean functions that can
be realized by linear threshold gates. And similarly, the fraction can be realized by
polynomial threshold gates of degree d.

3.2.2 The Capacity of Linear Threshold Gates

As an easy exercise, one can see that a number of well known Boolean functions of
n variables are linearly separable and computable by a single linear threshold gate.
For instance (see Figure 3.1), using a {−1,+1} encoding of the input variables:

� AND, OR, NOT: The basic Boolean operators are all linearly separable. AND
can be implemented using all weights equal to +1 and threshold equal to n−1.
OR can be implemented using all weights equal to +1 and threshold −(n−1).
NOT can be implemented by a linear homogeneous threshold gate with a single
weight equal to -1 and threshold 0.

� GEQ K, LEQ K (and MAJORITY as a special case): These functions com-
pute whether the total number of +1 in the input is larger or smaller than a
certain value K. Again they can be implemented using all weights equal to 1
and selecting the appropriate threshold.

� SELECT k: This is the Boolean function that is equal to the k−th component
of its input. It can be implemented using wk = 1, wi = 0 for all other weights,
and threshold 0.

� SINGLE u: This is the Boolean function that is equal to +1 on a single given
vertex u = (u1, . . . , un) of the hypercube, and -1 on all other vertices. It can
be implemented by a linear threshold gate with wi = ui and threshold n− 1.

However there are also many functions that are not linearly separable. For instance:

62 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

� PARITY: This function takes the value +1 if the total number of +1 compo-
nent in the input is even, and -1 otherwise.

� XOR: This function takes the value +1 only for input vectors that contain
exactly one +1 component.

� CONNECTED: This function takes the value +1 if all the +1 component of the
input are “together”, with or without wrap around. For instance, with n = 5,
(+1,+1,+1,−1,−1) should be mapped to +1, whereas (+1,−1,+1,−1,+1)
should me mapped to -1.

� PAIR: Fix two vertices on the hypercube and consider the Boolean function
that takes the value +1 on those two vertices, and -1 on all the remaining
vertices. For the vast majority of such pairs, the corresponding functions is
not linearly separable.

Figure 3.1: Larger box: Set of all Boolean functions of N variables. Smaller box:
Subset of all Linear Threshold Boolean functions of N variables.

3.2. CAPACITY OF SHALLOW NETWORKS 63

Thus what we would like to understand is what is the fraction of Boolean
functions that can be implemented by linear threshold functions. Equivalently, a
Boolean function can be viewed as a coloring of the vertices of the hypercube using
two colors: blue and red. We want to estimate the fraction of colorings that are
linearly separable.

Recall that in this context, the capacity C(n, 1) is the logarithm base two of
the number of such colorings. Estimating C(n, 1) is a fundamental problem in the
theory of neural networks and it has a relatively long history [39]. Next, we review
the main results leaving the proofs as exercises (with additional complements in the
references). To state the results, we will use the standard little o and big O notation.
As a reminder, given two real-valued functions f and g defined over R or N, we write
f(x) = O(g(x)) when x→ +∞ if and only if there exists a constant C and a value
x0 such that: |f(x)| ≤ C|g(x)| for all x ≥ x0. Similarly, we write f(x) = o(g(x)) for
x = a if and only if limx→a f(x)/g(x) = 0 (a can be finite or infinite).

The upper bound:

(3.18) C(n, 1) ≤ n2

for n > 1, has been known since the 1960s (e.g. [204] and references therein).
Likewise lower bounds of the form:

(3.19) αn2 ≤ C(n, 1)

for n > 1 with α < 1 were also derived in the 1960s. For instance, Muroga proved
a lower bound of n(n− 1)/2 (e.g. [463]), leaving open the question on the correct
value of α. The problem of determining the right order was finally settled by Zuev
[708, 709] who proved that:

Theorem 1. The capacity of linear threshold functions satisfies:

(3.20) C(n, 1) = n2 (1 + o(1))

as n→∞.

More precisely, Zuev provided a lower bound of

(3.21)
(

1− 10

log n

)
· n2 ≤ log2 T (n, 1) ≤ n2.

64 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

J. Kahn, J. Komlós, E. Szemerédi [353, Section 4] further improved this result to:

(3.22) C(n, 1) = n2 − n log2 n±O(n)

Thus in short the capacity of a linear threshold gate is approximately n2, as
opposed to 2n for the total number of Boolean functions. Zuev’s result can be
derived from a combination of two results, one in enumerative combinatorics and
the other in probability. The combinatorial result is a consequence of Zaslavsky’s
formula for hyperplane arrangements [700], and the probabilistic result is Odlyzko’s
theorem on spans of random ±1 vectors [483]. Odlyzko’s theorem, in turn, is based
on a result on singularity of random matrices, namely that random matrices with
±1 entries have full rank with high probability (see also [353, 657]).

Intuitively, Zuev’s result is easy to understand from an information theoretic
point of view as it says that a linear threshold gate is fully specified by providing
n2 bits, corresponding to n examples of size n. For instance, these can be the n
support vectors, i.e. the n points closest to the separating hyperplane, taken from
the largest class (there is one additional bit required to specify the largest class but
this is irrelevant for n large).

Finally, it should be clear that C(n,m) ≈ mn2. This is simply because the
capacity of an A(n,m) architecture of linear threshold gates is equal to the sum of
the capacities of each gate, due to their independence.

3.2.3 The Capacity of Polynomial Threshold Gates

The capacity increases if we use separating polynomial hypersurfaces rather than
hyperplanes. Any Boolean function of n variables can be expressed as a polynomial
of degree at most n. To see this, just write the function f in conjunctive (or disjunc-
tive) normal form, or take the Fourier transform of f . A conjecture of J. Aspnes et
al. [48] and C. Wang and A. Williams [667] states that, for most Boolean functions
f(x), the lowest degree of p(x) such that f(x) = sgn(p(x)) is either bn/2c or dn/2e.
M. Anthony [38] and independently N. Alon (see [562]) proved one half of this con-
jecture, showing that for most Boolean functions the lower degree of p(x) is at least
dn/2e. The other half of the conjecture was settled, in an approximate sense (up to
additive logarithmic terms), by R. O’Donnell and R. A. Servedio [485] who gave an
upper bound n/2 +O(

√
n log n) on the degree of p(x).

However here we are more interested in low degree polynomial threshold func-
tions. While low degree polynomial threshold functions may be relatively rare within
the space of Boolean functions, they are of particular interest both theoretically and

3.2. CAPACITY OF SHALLOW NETWORKS 65

practically, due to their functional simplicity and their potential applications in bio-
logical modeling and neural network applications. Thus the most important question
is: How many low-degree polynomial threshold functions are there? Equivalently,
how many different ways are there to partition the Boolean cube by polynomial
surfaces of low degree? Equivalently how many bits can effectively be stored in the
coefficients of a polynomial threshold function? In short, we want to estimate the
cardinal capacity Cd(n, 1) of polynomial threshold gates of n variables of degree d,
for fixed degree d > 1, as well as slowly increasing values of d. We provide the
solution below. The details of the proof can be found in the references (see also
exercises).

The history of the solution of this problem parallels in many ways the history
of the solution for the case of d = 1. An upper bound Cd(n, 1) ≤ nd+1/d! was shown
in [66], see also [39]. A lower bound

(
n
d+1

)
≤ Cd(n, 1) was derived in [562]. This

lower bounds is approximately nd+1/(d+ 1)! which leaves a multiplicative gap O(d)
between the the upper and lower bounds. The problem was settled in [107] showing
the following theorem, which contains Zuev’s result as a special case.

Theorem 2. For any positive integers n and d such that 1 ≤ d ≤ n0.9, the capacity
of Boolean polynomial threshold functions of n variables and degree d satisfies1

(
1− C

log n

)d
· n
(
n

≤ d

)
≤ Cd(n, 1) ≤ n

(
n

≤ d

)
In this theorem C denotes a positive absolute constant; its value does not

depend on n or d. The exponent 0.9 in the constraint on d can be replaced by any
constant strictly less than 1 at the cost of changing the absolute constant C. The
upper bound in Theorem 2 holds for all 1 ≤ d ≤ n; it can be derived from counting
regions in hyperplane arrangements. The lower bound in Theorem 2 uses results on
random tensors and Reed-Muller codes [7].

For small degrees d, namely for d = o(log n), the factor (1−C/ log n)d becomes
1 − o(1) and Theorem 2 yields in this case the asymptotically tight bound on the
capacity:

(3.23) Cd(n, 1) = n

(
n

≤ d

)
(1− o(1))

To better understand this bound, note that a general polynomial of degree d has
(
n
≤d

)
monomial terms. Thus, to communicate a polynomial threshold function, one needs

1Here and in the rest of the book,
(

n
≤d

)
denotes the binomial sum up to term d, i.e.

(
n
≤d

)
=(

n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
.

66 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

to spend approximately n bits per monomial term. During learning, approximately
n bits can be stored per monomial term.

In some situations, it may be desirable to have a simpler estimate of Cd(n, 1)
that is free of binomial sums. For this purpose, we can simplify the conclusion of
Theorem 2 and state it as follows:

Theorem 3. For any integers n and d such that n > 1 and 1 ≤ d ≤ n0.9, the
number of Boolean polynomial threshold functions T (n, d) satisfies:

(
1− C

log n

)d
· n

d+1

d!
< log2 T (n, d) <

nd+1

d!

The upper bound in Theorem 3 actually holds for all n > 1, 1 ≤ d ≤ n. For
small degrees d, namely for d = o(log n), the factor (1−C/ log n)d becomes 1− o(1)
and Theorem 3 yields in this case the asymptotically tight bound on the capacity:

(3.24) Cd(n, 1) =
nd+1

d!
(1− o(1))

In summary, polynomial threshold functions of degree d in n variables provide a
simple way to stratify all Boolean functions of these variables (Figure 3.2). In order
to specify a polynomial threshold function in n variables and with degree d, one
needs approximately nd+1/d! bits. This corresponds to providing the nd/d! support
vectors on the hypercube that are closest to the separating polynomial surface of
degree d in the largest class. Equivalently, there are approximately 2n

d+1/d! different
ways to separate the points of the Boolean cube {−1, 1}n into two classes by a
polynomial surface of degree d, i.e. the zero set of a polynomial of degree d.

3.2.4 The Capacity of Other Units

It is possible to consider other models and compute their capacity (see exercises).
For instance, the capacity of linear threshold gates with binary {−1,+1} weights
CB(n, 1) is linear rather than quadratic:

(3.25) CB(n, 1) ≈ n

In contrast, the capacity of linear threshold gates with positive weights CP (n, 1)
remains quadratic:

3.2. CAPACITY OF SHALLOW NETWORKS 67

Figure 3.2: Stratified capacity of different classes of Boolean functions ofN variables.
Linear threshold functions with binary weights have capacity N . Linear threshold
functions with positive weights have capacity N2 − N . Linear threshold functions
have capacity N2. Polynomial threshold functions of degree 2 have capacity N3/2.
More generally, polynomial threshold functions of degree d have capacity Nd+1/d!
(fixed or slowly growing d). All these results are up to a multiplicative factor of
(1 + o(1)). The set of all Boolean functions has capacity exactly equal to 2N .

(3.26) CP (n, 1) = n2 (1 + o(1))

Finally, to study the capacity of a ReLU gate, one can imagine concatenating it
with a linear threshold gate to produce a binary output. If we consider an A(n, 1, 1)
architecture where the hidden unit and the output unit are linear threshold gates,
then it is easy to show that the capacity is unchanged, that is:

(3.27) C(n, 1, 1) = C(n, 1)

68 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

If the hidden units is a ReLU, then the capacity increases but still remains quadratic.
Thus, with this definition of the capacity CReLU(n, 1) of a ReLU unit, one has:

(3.28) CReLU(n, 1) = n2 (1 + o(1))

The same approach can be used for other gates with continuous output. As a side
note, with this approach, the capacity of a linear unit–obtained by concatenating a
linear unit with a threshold unit–is exactly equal to the capacity of a linear threshold
gate.

3.3 Shallow Learning

3.3.1 Gradient Descent

One of the most important learning algorithms when there is a well-defined error
function E is gradient descent, which can generally be written as:

(3.29) ∆wij = −η ∂E
wij

From the Bayesian statistical framework, we have seen that in the three models for
regression, 2-classification, and k-classification the gradient ∂E/∂S is the same and
equal to −(T − O). Since ∂S/∂wij = Ij, the gradient descent learning equation for
all three cases is given by:

(3.30) ∆wj = η(T −O)Ij or ∆wij = η(Ti −Oi)Ij (k− classification)

If we consider an entire output layer of linear units (regression), or logistic units
(multiple 2-classifications), then the learning equations for all three cases become
identical. As usual, these equations are for a single example and must be summed
or averaged over the entire training set (or a minibatch) during any form of batch
learning. For instance, in the case of linear regression or logistic regression, the
learning equations become:

(3.31) ∆wj = η
1

K

∑
t

(T (t)−O(t)) Ij(t)

3.3. SHALLOW LEARNING 69

where t runs over the batch or minibatch of size K.

Gradient descent learning in shallow networks is relatively easy to analyze due
to convexity considerations [542, 140]. We are going to see that the error function
in the linear and 2-classification cases are convex in the synaptic weights. We leave
the k-classification case as an exercise. Thus, in general, gradient descent learning
will converge to a global minimum of the error function in these shallow cases.

To study convexity, it is easy to see from the definition of convexity that a linear
combination of convex functions with positive coefficients is also convex. Since the
batch error functions are sums of individual-example error functions, it is sufficient
to show that the error functions for each training example are themselves convex
with respect to the synaptic weights. And in cases where, for each example, the
error function is a sum of component-wise error functions (e.g. in vector regression),
it is sufficient to deal with each individual component of the error for each example.
‘

3.3.2 The Linear Case

We leave it as an exercise to check that the error function is convex. The linear
case, however, corresponds to linear regression and one can analytically derive an
expression for the optimal weights. The critical equation is obtained by setting the
gradient to zero. Using the matrix notation described in the previous chapter and
the expectation symbol to denote averages over the training set, this yields:

(3.32) E
(
(T −O)I t

)
= 0 or E(TI t)− E(WII t) = 0

where W is the matrix of weights. We introduce the two covariance matrices of the
data E(TI t) = ΣTI and E(II t) = ΣII . Using these matrices, yields the equivalent
form: ΣTI = WΣII . Thus in the general case where ΣII is invertible, the optimal
weight matrix is given by:

(3.33) W ∗ = ΣTIΣ
−1
II

Note that the same equation applies regardless of whether the output layer contains
a single or multiple units. With n input units (possibly including the clamped unit
for the bias) and m output units, the matrix W is m× n.

70 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

3.3.3 The Logistic Case

To prove convexity in the case of logistic regression with a single logistic unit, we
simply show that the Hessian is semi-definite positive. Using the results obtained
above it is easy to compute the second order derivatives, as follows:

(3.34)
∂2E
∂w2

i

=
∂

∂wi

∂E
∂wi

= − ∂

∂wi
(T −O)Ii = Ii

∂O

∂wi
= I2

i

∂O

∂S

using ∂E/∂wi = −(T − O)Ii and ∂O/∂wi = ∂O/∂S × ∂S/∂wi = ∂O/∂S × Ii.
Likewise,

(3.35)
∂2E
∂wiwj

=
∂

∂wj

∂E
∂wi

= − ∂

∂wj
(T −O)Ii = Ii

∂O

∂wj
= IiIj

∂O

∂S

Thus the Hessian H is given by ∂O
∂S
II t. The logistic function is monotone increasing

(∂O/∂S > 0). Thus for any vector x of dimension n: xtHx = ∂O
∂S
xtII tx ≥ 0 and E

is convex.

3.3.4 The Perceptron (Linear Threshold Function) Case

Here we consider a linear threshold function. As mentioned in the Introduction,
the perceptron learning rule can be written as a gradient descent rule of the form
∆wi = η(T −O)Ii. However this is not how the rule is usually presented. To see the
equivalence between the two forms, let us first notice that as long as the rule is also
applied to the bias and all the weights are initialized to zero, then the learning rate
is irrelevant. It only influences the scale of the weights and thus of the activation,
but not the output of the perceptron. As a result, for simplicity, we can assume that
η = 0.5. Next, note that the term T − O is non-zero only when there is an error,
and in this case it is equal to +2 or -2. Thus, we can write the more standard, but
equivalent, form of the perceptron learning rule:

(3.36) ∆w =

I, T = +1 and O = −1

−I, T = −1 and O = +1

0 otherwise.

which holds for any input I. The perceptron learning algorithm initializes the weight
vector to zero w(0) = 0 and then at each step it selects an element of the training set
that is mis-classified and applies the learning rule above. The perceptron learning

3.3. SHALLOW LEARNING 71

theorem states that if the data is separable, then the perceptron algorithm will
converge to a separating hyperplane in finite time. One may suspect that this may
be the case because the rule amounts to applying stochastic gradient descent to
a unit with a sigmoidal (logistic or tanh) transfer function, which is similar to a
perceptron. In addition, the rule above clearly improves the performance on an
example I that is mis-classified. For instance if the target of I is +1 and I is mis-
classified and selected at step t, then we must have w(t)·I < 0 and w(t+1) = w(t)+I.
As a result, the performance of the perceptron on example I is improved since
w(t + 1) · I = w(t) · I + ||I||2, and similarly for mis-classified examples that have a
negative target. However none of these arguments is sufficient to give a definitive
proof of convergence.

To prove convergence, consider a training set of the form {(I(k), T (k)} for
k = 1, . . . , K. To say that it is linearly separable means that there exists a weight
vector w∗, with ||w∗|| = 1, such that T (k)w∗ ·I(k) > 0 for every k, where “·” denotes
the dot product. Since the training set is finite, we can let γ correspond to the worst
case margin, i.e. γ = mink T (k)w∗ · I(k). Let also R be the radius of the data, i.e.
R = maxk ||I(k)||.
Theorem 4. With separable data, the perceptron learning algorithm converges in at
most R2/γ2 steps to a weight vector that separates the data (zero training error).

Proof: The idea of the proof is simply to look at the angle between the current
value of the weight vector w(t) and w∗ and how it evolves in time. Let us suppose
that example I(k) = I with target T (k) = T is selected at step t. Then: w(t+ 1) =
w(t) + TI and thus:

(3.37) w(t+ 1) · w∗ − w(t) · w∗ = (w(t) + TI) · w∗ − w(t) · w∗ = TI · w∗ ≥ γ

Thus, since w(0) = 0, after n learning steps we have:

(3.38) w(n) · w∗ ≥ nγ

To estimate the angle, we also need an estimate of the size of w. Since w(t + 1) =
w(t) + TI, we have:

(3.39) ||w(t+ 1)||2 = (w(t) + TI)2 ≤ ||w(t)||2 + ||TI||2 ≤ ||w(t)||2 +R2

since wTI < 0. Thus after n steps, we have:

72 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

(3.40) ||w(n)||2 ≤ nR2

Thus the cosine between w(n) and w∗ satisfies:

(3.41) cos (w(n), w∗) =
w(n) · w∗
||w(n)||||w∗|| ≥

nγ√
nR

and thus by the time n reaches the value R2/γ2 (or its floor) the cosine of the angle
is equal or close to 1, thus the angle is equal or close to 0, and it is easy to check
that all the training examples are correctly classified. It is also easy to see that the
result remains true even if w(0) 6= 0, although in general the convergence may be
slower. If the data is not linearly separable, one can show the so-called perceptron
cycling theorem which states that with the perceptron learning algorithm the weight
vector w remains bounded and does not diverge to infinity [127, 273], and likewise
the number of errors is bounded [481].

3.3.5 Data Normalization, Weight Initializations, Learning
Rates, and Noise

Even in the simple case of gradual learning in a single unit there are a number of
important practical issues.

First, everything else being equal, there is no reason to favor a particular
component of the input vector. Doing so may actually slow down learning. Thus
it is useful to preprocess the training data by normalizing each component in the
same way through some affine transformation. Typically this is done by subtracting
the mean and rescaling the range of each component to some fixed interval, or
normalizing the standard deviations to one.

Second, everything else being equal, there is no reason to favor any synaptic
weight, and doing so may actually slow down learning. A large bias, for instance,
is associated with a hyperplane that is likely to be far from the cloud of normalized
data points and thus likely to perform poorly, requiring larger modifications during
learning. Thus all the weights, including the bias, should be initialized to small
values. This can be done efficiently by initializing each weight independently using
a uniform or normal distribution with small standard deviation.

Third, there is the issue of the learning rate, or step size, which must be
decreased as learning progresses in order to converge to the optimum. In simple
convex cases, it is possible to estimate the time of convergence to the global minimum

3.4. EXTENSIONS OF SHALLOW LEARNING 73

with a given rate schedule and derive effective rate schedules. In more complex
and realistic deep learning cases, the schedules must be set in advance or adjusted
somewhat empirically at training time as a function of the data.

And fourth, in tandem with the third point, gradient descent changes are often
applied using mini-batches. The size of the mini-batches is one way to control the
degree of stochasticity of the learning process. In the case of a single unit, or a
shallow layer, we have seen that the error functions are typically convex thus the
use of stochastic gradient descent is less critical than for deep networks. A classical
result due to Robbins and Monro [541] is that, in the convex case, following noisy
gradients with a decreasing step size provably reaches the optimum.

The true gradient is a sum of many terms, the gradients computed on each
example. Thus stochastic gradient can be viewed as a drawing from a Gaussian ran-
dom variable with mean equal to the true gradient, and standard deviation inversely
proportional to the square root of the batch size. The larger the mini-batches, the
closer the gradient estimate is to the true gradient. In this way, stochastic gradient
descent can be modeled as a Ornstein-Uhlenbeck Brownian motion process [636]
leading to a stochastic differential equation [488, 434].

3.4 Extensions of Shallow Learning

In this chapter we have studied the design and learning algorithms for shallow A(n, 1)
or A(n,m) architectures. However, the same ideas can be applied immediately to a
number of other settings. In a later chapter, we will consider an example of shallow
recurrent network called the Hopfield model, consisting of n symmetrically connected
linear threshold gates, which are all visible. This enables the implementation of
shallow learning using the simple Hebb’s rule. Here we consider other examples
within the class of layered feedforward networks.

3.4.1 Top Layer of Deep Architectures

In this chapter, we have seen how to design a shallow network for regression or
classification and derived a gradient descent learning rule for it. However the design
solution is far more general and can be applied to the design of the top layer of
any deep feedforward architecture for regression or classification purposes. Thus
the general design problem for deep forward architectures is basically solved for the
output layer. Furthermore, if all the weights in the lower layers are frozen, the same
learning algorithm can be applied. Indeed, freezing the weights of the lower layers
simply provides a transformation of the original input vectors into a new set of input

74 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

vectors for the top layer. Thus logically the next level of architectural complexity
to be explored is provided by feedforward architectures A(n,m, p) with two layers
of weights, but where the lower layer weights are fixed and only the upper layer is
adaptive. This actually happens in two well-known cases: extreme machines where
the lower weights are random, and support vector machines where the lower weights
are equal to the training examples.

3.4.2 Extreme Machines

In the so-called extreme machines [330, 158], the weights in the lower layer are
chosen at random and thus provide a random transformation of the input data. In
the case where the hidden layer consists of linear units and is smaller in size than
the input layer (n > m), this can be justified by the the Johnson-Lindenstrauss
Lemma and other related theorems [348, 258, 215]. The basic idea implemented
by this first layer is the idea of dimensionality reduction with little distortion. The
Johnson-Lindenstrauss Lemma states that a properly-scaled random projection from
a high-dimensional space to a lower-dimensional space tends to maintain pairwise
distances between data points. More precisely:

Lemma 1. (Johnson-Lindenstrauss) Given 0 < ε < 1, a set X of K points in Rn,
and a number m > 8 ln(K)/ε2, there is a linear map f : Rn −→ Rm such that:

(3.42) (1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2

for all u, v ∈ X. f can be a suitably scaled orthogonal projection onto a random
subspace of dimension m.

Thus the first random layer reduces the dimensionality of the data without
introducing too much distortion. The following layer can address classification or
regression problems based on the more compact representation generated in the
hidden layer. The theory derived in this chapter (e.g. design, learning algorithm,
and learning convergence) applies immediately to the top layer of this case without
any changes. Note that this remains true even if non-linear transfer functions are
used in the hidden layer, as long as the random projection weights remain fixed.
In some cases, expansive transformations where m > n can also be considered, for
instance in order to encode input vectors into sparse hidden vectors (see [57] for
related work).

3.5. EXERCISES 75

3.4.3 Support Vector Machines

From an architectural standpoint, in support vector machines (SVMs) [202, 208], the
units in the hidden layer are also linear as in extreme machines. The weights of these
hidden units are identical to the vectors in the training set. Thus each hidden unit is
associated with one training example and its activation is equal to the dot product
between the input vector and the corresponding training example. More precisely,
consider the binary classification problem with input vectors I(1), . . . , I(K) with
corresponding binary targets T (1), . . . , T (K). It can be shown that the separating
hyperplane with maximal margin can be written in the activation form:

(3.43) S(I) =
K∑
i=1

wiT (i)(I · Ii) + w0 =
K∑
i=1

wiT (i)(I tIi) + w0

While gradient descent can be applied to learning the weight vector w, SVMs come
with their own optimization learning algorithm. In the optimal solution, the vectors
associated with non-zero weights are the support vectors. This approach can be
generalized to kernel machines where a similarity kernel K(I, Ij) is used to compute
the similarity between I and Ij in lieu of the dot product [577].

3.5 Exercises

3.1 Derive the prior distribution associated with L1 regularization. Extend the
analysis to Lp regularization.

3.2 What happens in linear regression when the matrix ΣII is not invertible?

3.3 Estimate the expectation of the error that a trained linear unit makes on a new
data point, i.e. a data point not in the training set (generalization error)? How does
this expectation depend on the size of the training set. Clarify all your assumptions.

3.4 (1) Prove that the quadratic error function in linear regression is convex with
respect to the weights. (2) Consider k-classification with softmax output units
satisfying Oi = eSi/

∑
j e

Sj . Is the relative entropy error term associated with Oi

convex with respect to the weights wij associated with Si? Is the relative entropy
error term associated with Oi convex with respect to the other weights wkl, i.e. the
weights associated with the other activations Sk, k 6= i)?

76 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

3.5 Study the evolution of the weight vector during learning in a single linear unit
trained using the simple Hebbian learning rule ∆wi = ηOIi.

3.6 Prove that any Boolean functions of n variables can be written as a polynomial
threshold function of degree n.

3.7 Let Cd(n, 1) be the logarithm base 2 of the number of Boolean polynomial
threshold functions of n variables of degree d, and C∗d(n, 1) be the number of Boolean
homogeneous (over Hn = {−1, 1}n) polynomial threshold functions of n variables
of degree d. Prove the following relationships (the degree d is omitted when d = 1):

(3.44) C(n, 1) = C∗(n+ 1, 1)

(3.45) C∗d−1(n, 1) < C∗d(n, 1) < C∗(

(
n

d

)
, 1) for d ≥ 2

(3.46) Cd−1(n, 1) < Cd(n, 1) < C([

(
n

0

)
+

(
n

1

)
+ . . .

(
n

d

)
, 1) for d ≥ 2

3.8 Hyperplane arrangements. 1) Prove that the number K(m,n) of connected
regions created by m hyperplanes in Rn (passing through the origin) satisfies:

K(m,n) ≤ 2
n−1∑
k=0

(
m− 1

k

)
= 2

(
m− 1

≤ n− 1

)
2) Prove that this bound becomes an equality if the normal vectors to the hyper-
planes are in general position. 3) Prove that the same bound and equality condition
remain true for m central hyperplanes (i.e. affine hyperplanes passing through the
same point). 4) Prove that the number L(m,n) of connected regions created by m
affine hyperplanes in Rn satisfies:

L(m,n) ≤
n∑
k=0

(
m

k

)
=

(
m

≤ n

)
5) Prove that L(m,n) is bounded below by the number of all intersection subspaces
defined by the hyperplanes. [An intersection subspace refers to the intersection of

3.5. EXERCISES 77

any subfamily of the original set of hyperplanes. The dimensions of an intersection
subspace may range from zero (a single point) to n (intersecting an empty set of
hyperplanes gives the entire space Rn)]. 6) Prove that if the hyperplanes are in
general position, then the upper bound and the lower bound are the same and each
bound becomes and equality. These results are needed for the next few exercises.

3.9 To see the relevance of hyperplane arrangements, let us fix a finite subset S ⊂
Rn\{0} and consider all homogeneous linear threshold functions on S, i.e. functions
f : S → R of the form

fa(x) = sgn(a · x)

where a ∈ Rn is a fixed vector. Consider the collection (“arrangement”) of hyper-
planes

{x⊥ : x ∈ S},
where x⊥ = {z ∈ Rn : z · x = 0} is the hyperplane through the origin with normal
vector x. Two vectors a and b define the same homogeneous linear threshold function
fa = fb if and only if a and b lie on the same side of each of these hyperplanes. In
other words, fa = fb if and only if a and b lie in the same open component of the
partition of Rn created by the hyperplanes x⊥, with x ∈ S. Such open components
are called the regions of the hyperplane arrangement. Prove that: the number of
homogeneous linear threshold functions on a given finite set S ⊂ Rn \ {0} equals
the number of regions of the hyperplane arrangement {x⊥ : x ∈ S}.

3.10 Prove the following theorem originally obtained by Wendel [678].

Theorem 5. Let K points in Rn be drawn i.i.d from a centrosymmetric distribution
such that the points are in general position. Then the probability that all the points
fall in some half space is:

(3.47) Pn,K = 2−K+1

(
K − 1

≤ n− 1

)
= 2−K+1

n−1∑
i=0

(
K − 1

i

)

3.11 Prove that for any n > 1, the following upper bound holds:

(3.48) C(n, 1) ≤ n2

3.12 Prove that for any n > 1 and all degrees d such that 1 ≤ d ≤ n, the following
upper bound holds:

78 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

(3.49) Cd(n, 1) ≤ n

(
n

≤ d

)

3.13 Capacity of sets. The capacity C(S) of a finite set S ⊂ Rn containing |S|
points is defined to be the logarithm base two of the number of possible ways the set
can be split by linear threshold functions. Likewise, the capacity Cd(S) of order d
(d > 1) of S is defined to be the logarithm base two of the number of possible ways
the set can be split by polynomial threshold functions of degree d. More generally,
we can define the capacity C(S, n1, . . . , nL) to be the logarithm base 2 of the number
of linear threshold functions that can be defined on the set S using a feedforward
architecture A(n1, . . . , nL) of linear threshold function (with n = n1). Obviously
C(S) = C(S, n, 1). Prove that this notion of set capacity satisifes the following
properties:

1) Affine invariance: For any invertible affine transformation F : Rn1 → Rn1 , we
have:

C
(
F (S), n1, n2, . . . , nL

)
= C(S, n1, n2, . . . , nL)

2) Single layer: For any set S ⊂ Rn:

C(S, n,m) = C(S)m

3) Replacement by image: For any set S ⊂ Rn1 and a threshold map from Rn1 to
Hn2 , we have:

C
(
f(S), n2, n3, . . . , nL

)
≤ C(S, n1, n2, . . . , nL)

Derive lower and upper bounds on C(S) and Cd(S) when S ∈ Rn and when S ∈
{−1,+1}n. In particular, show that for any such set in Rn:

(3.50) C(S) ≤ 2

(|S| − 1

≤ n

)
and:

1 + log2 |S| ≤ C(S) ≤ 1 + n log2

(
e|S|
n

)
where the lower bound is true as soon as |S| > 217. The upperbound can be
simplified to n log2 |S| as soon as n > 4. To prove this result you will need to prove
the following inequality as an intermediate result:

3.5. EXERCISES 79

(3.51)
n∑
k=0

(
N

k

)
≤
(
eN

n

)n
which is valid for all integers 1 ≤ n ≤ N . Show that the lower bound is attained by
a particular choice of S. If S is a subset of the Boolean hypercube, the lower bound
can be improved to:

1

16
log2

2 |S| ≤ C(S) ≤ 1 + n log2

(
e|S|
n

)
3.14 Prove a lower bound of the form αn2 ≤ C(n, 1) for some positive constant α
less than one. For example, use a recursive construction to show that the number
of linear threshold functions of n variables is greater than 2n(n−1)/2.

3.15 Capacity with binary weights. Let CB(n, 1) be the capacity of a linear
threshold gate with n inputs with binary weights restricted to {−1, 1}. Let C∗B(n, 1)
be the capacity of a linear homogeneous threshold gate (i.e. with no bias) with n
inputs, with binary weights restricted to {−1, 1}. Prove that for any n:

C∗B(n, 1) = n if n is odd

CB(n, 1) = n+ 1 if n is even

Show that if one extends the definition of a threshold function by arbitrarily deciding
that sgn(0) = +1, then each formula above is true for every n.

Show that the capacity of polynomial threshold gates of degree d > 1 with
binary weights satisfies

CB,d(n, 1) ≤
d∑

k=1

(
n

k

)
=

(
n

≤ d

)
− 1

Derive a similar upperbound in the homogeneous case, where homogeneous is defined
over Hn. Derive a similar upperbound in the homogeneous case, where homogeneous
is defined over Rn.

3.16 Capacity with positive weights. Let CP (n, 1) be the capacity of a lin-
ear threshold gate with n inputs with weights restricted to be positive (≥ 0), and
similarly C∗P (n, 1) for linear threshold gate with n inputs but no bias. Prove that:

C∗P (n, 1) =
C∗(n, 1)

2n

80 CHAPTER 3. SHALLOW NETWORKS AND SHALLOW LEARNING

and:

C∗P (n, 1) ≤ CP (n, 1) ≤ C∗P (n+ 1, 1)

As a result, using Zuev’s result:

CP (n, 1) = n2 (1 + o(1))

In short, for d = 1, when the synaptic weights are forced to be positive the capacity
is still quadratic. Write a conjecture for the case d > 1 corresponding to polynomial
threshold gates of degree d with positive weights.

3.17 Estimate the capacity of an architecture A(n, 1, 1) where the hidden unit is a
ReLU unit, and the output unit is a linear threshold unit.

3.18 Study the perceptron algorithm when w(0) 6= 0. Prove that, in the linearly
separable case, the algorithm is still convergent, but the convergence in general may
be slower. Study the perceptron algorithm in the case of training data that is not
linearly separable. Prove that in this case, the weight vector remains bounded and
does not diverge to infinity.

3.19 Satisfiability of threshold gates. Considerm linear threshold gates f1, . . . , fm
of n binary variables, i.e. the common input is in {−1,+1}n, with binary weights
restricted to the set {−1,+1}. These threshold functions are said to be satisfiable
if there exists a vector x in {−1,+1}n such that fi(x) = 1 for i = 1, . . . ,m. Is the
satisfiability of threshold gates problem NP-complete?

3.20 Study by simulations and analytically, whenever possible, the behavior of
stochastic gradient descent in shallow learning, including: the effect of data nor-
malization, the effect weight initialization, the effect of the learning rate, the effect
of noise (e.g. online versus batch learning), and the speed and accuracy of conver-
gence to the global minimum. Begin with the simplest case of a single linear unit
with a single weight acting as a multiplier (i.e. O = wI) and generalize to a linear
unit with n weights. Then proceed with a logistic unit with a single weight (i.e.
O = σ(wI), σ is the logistic function) and then generalize to n weights.

3.21 Study by simulations and analytically, whenever possible, the learning behavior
of a single linear or logistic unit with probabilistic output, i.e. where the output O′ is
sampled from the normal distribution with mean O =

∑
iwiIi in the linear regression

case, or from the Bernouilli distribution with parameter p = O = σ(
∑

iwiIi) (σ is
the logistic function) in the binary classification case. Start with a single weight and

3.5. EXERCISES 81

generalize to n weights. For learning, consider the quadratic (linear case) or relative
entropy (classification case) error functions based on O, or on O′, in combination
with two learning rules: ∆wi = η(T − O)Ii and ∆wi = η(T − O′)Ii, for a total
of four error/rule combinations. For each combination, examine both on-line and
batch learning.

3.22 Show that there exists a differentiable transfer function such that the Boolean
XOR function can be implemented by a single unit with linear activation. More
broadly, show every Boolean function of n variables that is symmetric, i.e. invariant
under any permutation of its input entries, there exists a differentiable transfer
function such that the function can be implemented by a single unit with linear
activation and identical weights. Even more broadly, show that for every Boolean
function of n variables, there exists a differentiable transfer function and a set of
weights (with a corresponding linear activation) that can realize the function exactly.

3.23 Prove the Johnson-Lindenstrauss Lemma.

	Contents
	Preface
	Introduction
	Carbon-Based and Silicon-Based Computing
	Early Beginnings Until the Late 1940s
	Linear Regression
	Neuroscience Origins
	The Deep Learning Problem
	Hebbian Learning

	From 1950 to 1980
	Shallow Non-Linear Learning
	First Forays into Deep Architectures and their Challenges

	From 1980 to Today
	Roadmap
	Exercises

	Basic Concepts
	Synapses
	Units or Neurons
	Activations
	Transfer Functions
	Identity and Linear Transfer Functions
	Polynomial Transfer Functions
	Max (Pool) Transfer Functions
	Threshold Transfer Functions
	Rectified and Piece-Wise Linear Transfer Functions
	Sigmoidal Transfer Functions
	Softmax Transfer Functions

	Discrete versus Continuous Time
	Networks and Architectures
	The Proper Definition of Deep
	Feedforward Architectures
	Recurrent Architectures
	Layered Architectures
	Weight Sharing, Convolutional, and Siamese Architectures

	Functional and Cardinal Capacity of Architectures
	The Bayesian Statistical Framework
	Variational Approaches

	Information Theory
	Data and Learning Settings
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning
	Self-supervised Learning
	Transfer Learning
	On-line versus Batch Learning
	Reinforcement Learning

	Learning Rules
	Computational Complexity Theory
	Exercises

	Shallow Networks and Shallow Learning
	Supervised Shallow Networks and their Design
	Regression
	Classification
	k-Classification
	Prior Distributions and Regularization
	Probabilistic Neural Networks
	Independence of Units During Learning in Shallow Networks

	Capacity of Shallow Networks
	Functional Capacity
	The Capacity of Linear Threshold Gates
	The Capacity of Polynomial Threshold Gates
	The Capacity of Other Units

	Shallow Learning
	Gradient Descent
	The Linear Case
	The Logistic Case
	The Perceptron (Linear Threshold Function) Case
	Data Normalization, Weight Initializations, Learning Rates, and Noise

	Extensions of Shallow Learning
	Top Layer of Deep Architectures
	Extreme Machines
	Support Vector Machines

	Exercises

	Two Layer Networks and Universal Approximation
	Functional Capacity
	The Linear Model
	The Unrestricted Boolean Model

	Universal Approximation Properties
	Boolean Setting and Threshold Gates
	The Classification Setting
	The Regression Setting

	The Capacity of A(n,m,1) Architectures
	Exercises

	Autoencoders
	A General Autoencoder Framework
	General Autoencoder Properties
	Linear Autoencoders
	Useful Reminders
	Group Invariances
	Fixed-Layer and Convexity Results
	Critical Points and the Landscape of E
	Learning Algorithms
	Generalization Properties

	Non-Linear Autoencoders: Unrestricted Boolean Case
	Analysis of the Unrestricted Boolean Autoencoder
	Boolean Autoencoder Problem Complexity

	Other Autoencoders and Autoencoder Properties
	Threshold Gate, Sigmoidal, and Mixed Autoencoders
	Inverting, Redressing, and De-Noising Autoencoders
	Probabilistic Autoencoders and Variational Autoencoders
	Expansive Autoencoders
	Composition of Autoencoders

	Exercises

	Deep Networks and Backpropagation
	Why Deep?
	Functional Capacity: Deep Linear Case
	Functional Capacity: Deep Unrestricted Boolean Case
	Cardinal Capacity: Deep Feedforward Architectures
	Other Notions of Capacity
	Learning by Backpropagation
	Backpropagation
	Deep Targets
	Backpropagation through Probabilistic Layers
	Backpropagation in Linear Networks

	The Optimality of Backpropagation
	Stochastic Gradient Descent
	Using Backpropagation to Compute Gradients

	Architecture Design
	Design
	Invariances
	Ensembles

	Practical Training Issues
	The Bias-Variance Decomposition
	Dropout
	Ensemble Averaging: Linear Networks
	Ensemble Averaging: Non-linear Networks
	Adaptive Regularization: Linear Unit
	Adaptive Regularization: Linear Networks

	Model Compression and Dark Knowledge
	Multiplicative Interactions: Gating and Attention
	Unsupervised Learning and Generative Models
	Generative Adversarial Networks (GANs)
	Autoregressive Generative Models (ARMs)
	Flow Models

	Exercises

	The Local Learning Principle
	Virtualization and Learning in the Machine
	The Neuronal View
	The Synaptic View: the Local Learning Principle
	Stratification of Learning Rules
	Deep Local Learning and its Fundamental Limitations
	Local Deep Learning: the Deep Learning Channel
	Local Deep Learning and Deep Targets Equivalence
	Exercises

	The Deep Learning Channel
	Random Backpropagation (RBP) and its Variations
	Variations

	Simulations of Random Backpropagation
	Understanding Random Backpropagation
	Mathematical Analysis of Random Backpropagation
	Further Remarks About Learning Channels
	Circular Autoencoders
	Recirculation: Locality in Both Space and Time
	Simulations of Recirculation
	Recirculation is Random Backpropagation
	Mathematical Analysis of Recirculation
	Exercises

	Recurrent Networks
	Recurrent Networks
	Cardinal Capacity of Recurrent Networks
	Symmetric Connections: The Hopfield Model
	Symmetric Connections: Boltzmann Machines
	 Restricted Boltzmann Machines (RBMs):

	Exercises

	Recursive Networks
	Variable-Size Structured Data
	Recursive Networks and Design
	Inner Approaches
	Outer Approaches

	Relationships between Inner and Outer Approaches
	Exercises

	Applications in Physics
	Deep Learning in the Physical Sciences
	Antimatter Physics
	ASACUSA

	High Energy Collider Physics
	The Large Hadron Collider and the ATLAS Detector
	Exotic Particle Searches
	Jet Substructure Classification
	Decorrelated Tagging with Adversarial Neural Networks
	Building Sparse Generative Models

	Neutrino Physics
	Dark Matter Physics
	Cosmology and Astrophysics
	Climate Physics
	Incorporating Physics Knowledge and Constraints
	Incorporating Physics Constraints

	Conclusion: Theoretical Physics

	Applications in Chemistry
	Chemical Data and Chemical Space
	Prediction of Small Molecule Properties
	Representations
	Similarity Measures and Kernels
	Prediction of 3D Structures
	Deep Learning: Feedforward Networks
	Deep Learning: Recursive Inner Approaches
	Deep Learning: Recursive Outer Approaches

	Prediction of Chemical Reactions
	Representations
	QM Approaches
	Rule-Based Approaches
	Deep Learning Approaches

	Applications in Biology and Medicine
	Biomedical Data
	Life in a Nutshell
	Deep Learning in Proteomics
	Protein Structures
	Protein Secondary Structure and Other Structural Features
	Protein Contact and Distance Maps
	Protein Functional Features

	Deep Learning in Genomics and Transcriptomics
	Deep Learning in Biomedical Imaging
	Deep Learning in Health Care

	Conclusion
	Explainability and the Black-Box Question
	ANNs versus BNNs

	Appendix: Reinforcement Learning
	Appendix: Hints and Remarks for the Exercises
	Bibliography
	Index

